#include #include #include #include "cuda_compat.h" #include "dispatch_utils.h" #ifdef USE_ROCM #include "quantization/fp8/amd/quant_utils.cuh" #else #include "quantization/fp8/nvidia/quant_utils.cuh" #endif #include #include #include #include #ifdef USE_ROCM #include typedef __hip_bfloat16 __nv_bfloat16; #endif void swap_blocks(torch::Tensor& src, torch::Tensor& dst, const torch::Tensor& block_mapping) { torch::Device src_device = src.device(); torch::Device dst_device = dst.device(); cudaMemcpyKind memcpy_type; if (src_device.is_cuda() && dst_device.is_cuda()) { TORCH_CHECK(src_device.index() == dst_device.index(), "src and dst must be on the same GPU"); memcpy_type = cudaMemcpyDeviceToDevice; } else if (src_device.is_cuda() && dst_device.is_cpu()) { memcpy_type = cudaMemcpyDeviceToHost; } else if (src_device.is_cpu() && dst_device.is_cuda()) { memcpy_type = cudaMemcpyHostToDevice; } else { TORCH_CHECK(false, "Invalid device combination"); } // NOTE: keep in mind that `block_mapping` should be // a cpu tensor, otherwise every `item` call will require a gpu-cpu // synchronization. TORCH_CHECK(block_mapping.device().is_cpu(), "block_mapping must be on CPU"); char* src_ptr = static_cast(src.data_ptr()); char* dst_ptr = static_cast(dst.data_ptr()); const int64_t block_size_in_bytes = src.element_size() * src[0].numel(); const at::cuda::OptionalCUDAGuard device_guard( src_device.is_cuda() ? src_device : dst_device); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); // NOTE: This can be slow if the number of blocks is large. const int64_t num_blocks = block_mapping.size(0); for (size_t i = 0; i < num_blocks; i++) { int64_t src_block_number = block_mapping[i][0].item(); int64_t dst_block_number = block_mapping[i][1].item(); int64_t src_offset = src_block_number * block_size_in_bytes; int64_t dst_offset = dst_block_number * block_size_in_bytes; cudaMemcpyAsync(dst_ptr + dst_offset, src_ptr + src_offset, block_size_in_bytes, memcpy_type, stream); } } namespace aphrodite { // Grid: (num_layers, num_pairs) template __global__ void copy_blocks_kernel(int64_t* key_cache_ptrs, int64_t* value_cache_ptrs, const int64_t* __restrict__ block_mapping, const int numel_per_block) { const int layer_idx = blockIdx.x; const int pair_idx = blockIdx.y; scalar_t* key_cache = reinterpret_cast(key_cache_ptrs[layer_idx]); scalar_t* value_cache = reinterpret_cast(value_cache_ptrs[layer_idx]); int64_t src_block_number = block_mapping[2 * pair_idx]; int64_t dst_block_number = block_mapping[2 * pair_idx + 1]; const int64_t src_block_offset = src_block_number * numel_per_block; const int64_t dst_block_offset = dst_block_number * numel_per_block; for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) { int64_t src_offset = src_block_offset + i; int64_t dst_offset = dst_block_offset + i; key_cache[dst_offset] = key_cache[src_offset]; } for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) { int64_t src_offset = src_block_offset + i; int64_t dst_offset = dst_block_offset + i; value_cache[dst_offset] = value_cache[src_offset]; } } } // namespace aphrodite // Note: the key_caches and value_caches vectors are constant but // not the Tensors they contain. The vectors need to be const refs // in order to satisfy pytorch's C++ operator registration code. void copy_blocks(std::vector const& key_caches, std::vector const& value_caches, const torch::Tensor& block_mapping) { int num_layers = key_caches.size(); TORCH_CHECK(num_layers == value_caches.size()); if (num_layers == 0) { return; } torch::Device cache_device = key_caches[0].device(); TORCH_CHECK(cache_device.is_cuda()); // Create data structures for the kernel. // Create an array of pointers to the key and value caches. int64_t key_cache_ptrs[num_layers]; int64_t value_cache_ptrs[num_layers]; for (int layer_idx = 0; layer_idx < num_layers; ++layer_idx) { key_cache_ptrs[layer_idx] = reinterpret_cast(key_caches[layer_idx].data_ptr()); value_cache_ptrs[layer_idx] = reinterpret_cast(value_caches[layer_idx].data_ptr()); } // block_mapping is a 2D tensor with shape (num_pairs, 2). int num_pairs = block_mapping.size(0); // Move the data structures to the GPU. // NOTE: This synchronizes the CPU and GPU. torch::Tensor key_cache_ptrs_tensor = torch::from_blob(key_cache_ptrs, {num_layers}, torch::kInt64) .to(cache_device); torch::Tensor value_cache_ptrs_tensor = torch::from_blob(value_cache_ptrs, {num_layers}, torch::kInt64) .to(cache_device); // Launch the kernel. const int numel_per_block = key_caches[0][0].numel(); dim3 grid(num_layers, num_pairs); dim3 block(std::min(1024, numel_per_block)); const at::cuda::OptionalCUDAGuard device_guard(cache_device); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); APHRODITE_DISPATCH_FLOATING_AND_BYTE_TYPES( key_caches[0].scalar_type(), "copy_blocks_kernel", ([&] { aphrodite::copy_blocks_kernel<<>>( key_cache_ptrs_tensor.data_ptr(), value_cache_ptrs_tensor.data_ptr(), block_mapping.data_ptr(), numel_per_block); })); } namespace aphrodite { template __global__ void reshape_and_cache_kernel( const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size] const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size] cache_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, // block_size, x] cache_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, // block_size] const int64_t* __restrict__ slot_mapping, // [num_tokens] const int key_stride, const int value_stride, const int num_heads, const int head_size, const int block_size, const int x, const float k_scale, const float v_scale) { const int64_t token_idx = blockIdx.x; const int64_t slot_idx = slot_mapping[token_idx]; if (slot_idx < 0) { // Padding token that should be ignored. return; } const int64_t block_idx = slot_idx / block_size; const int64_t block_offset = slot_idx % block_size; const int n = num_heads * head_size; for (int i = threadIdx.x; i < n; i += blockDim.x) { const int64_t src_key_idx = token_idx * key_stride + i; const int64_t src_value_idx = token_idx * value_stride + i; const int head_idx = i / head_size; const int head_offset = i % head_size; const int x_idx = head_offset / x; const int x_offset = head_offset % x; const int64_t tgt_key_idx = block_idx * num_heads * (head_size / x) * block_size * x + head_idx * (head_size / x) * block_size * x + x_idx * block_size * x + block_offset * x + x_offset; const int64_t tgt_value_idx = block_idx * num_heads * head_size * block_size + head_idx * head_size * block_size + head_offset * block_size + block_offset; scalar_t tgt_key = key[src_key_idx]; scalar_t tgt_value = value[src_value_idx]; if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) { key_cache[tgt_key_idx] = tgt_key; value_cache[tgt_value_idx] = tgt_value; } else { key_cache[tgt_key_idx] = fp8::scaled_convert(tgt_key, k_scale); value_cache[tgt_value_idx] = fp8::scaled_convert(tgt_value, v_scale); } } } template __global__ void reshape_and_cache_flash_kernel( const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size] const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size] scalar_t* __restrict__ k_cache, // [num_blocks, block_size, num_heads, // head_size] scalar_t* __restrict__ v_cache, // [num_blocks, block_size, num_heads, // head_size] const int64_t* __restrict__ slot_mapping, // [num_tokens] const int block_stride, const int key_stride, const int value_stride, const int num_heads, const int head_size, const int block_size) { const int64_t token_idx = blockIdx.x; const int64_t slot_idx = slot_mapping[token_idx]; // NOTE: slot_idx can be -1 if the token is padded if (slot_idx < 0) { return; } const int64_t block_idx = slot_idx / block_size; const int64_t block_offset = slot_idx % block_size; const int n = num_heads * head_size; for (int i = threadIdx.x; i < n; i += blockDim.x) { const int64_t src_key_idx = token_idx * key_stride + i; const int64_t src_value_idx = token_idx * value_stride + i; const int head_idx = i / head_size; const int head_offset = i % head_size; const int64_t tgt_value_idx = block_idx * block_stride + block_offset * num_heads * head_size + head_idx * head_size + head_offset; k_cache[tgt_value_idx] = key[src_key_idx]; v_cache[tgt_value_idx] = value[src_value_idx]; } } } // namespace aphrodite // KV_T is the stored data type of kv-cache. // CACHE_T is the data type of key and value tensors. // KV_DTYPE is the real data type of kv-cache. #define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \ aphrodite::reshape_and_cache_kernel \ <<>>( \ reinterpret_cast(key.data_ptr()), \ reinterpret_cast(value.data_ptr()), \ reinterpret_cast(key_cache.data_ptr()), \ reinterpret_cast(value_cache.data_ptr()), \ slot_mapping.data_ptr(), key_stride, value_stride, \ num_heads, head_size, block_size, x, k_scale, v_scale); void reshape_and_cache( torch::Tensor& key, // [num_tokens, num_heads, head_size] torch::Tensor& value, // [num_tokens, num_heads, head_size] torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x] torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size] torch::Tensor& slot_mapping, // [num_tokens] const std::string& kv_cache_dtype, const double k_scale, const double v_scale) { int num_tokens = key.size(0); int num_heads = key.size(1); int head_size = key.size(2); int block_size = key_cache.size(3); int x = key_cache.size(4); int key_stride = key.stride(0); int value_stride = value.stride(0); dim3 grid(num_tokens); dim3 block(std::min(num_heads * head_size, 512)); const at::cuda::OptionalCUDAGuard device_guard(device_of(key)); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype, CALL_RESHAPE_AND_CACHE) } void reshape_and_cache_flash( torch::Tensor& key, // [num_tokens, num_heads, head_size] torch::Tensor& value, // [num_tokens, num_heads, head_size] torch::Tensor& k_cache, // [num_blocks, block_size, num_heads, head_size] torch::Tensor& v_cache, // [num_blocks, block_size, num_heads, head_size] torch::Tensor& slot_mapping, // [num_tokens] const std::string& kv_cache_dtype) { // FIXME: only support auto datatype, does not support fp8 if (kv_cache_dtype != "auto") { TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype); } int num_tokens = key.size(0); int num_heads = key.size(1); int head_size = key.size(2); int block_size = k_cache.size(1); int key_stride = key.stride(0); int value_stride = value.stride(0); int block_stride = k_cache.stride(0); TORCH_CHECK(k_cache.stride(0) == v_cache.stride(0)); dim3 grid(num_tokens); dim3 block(std::min(num_heads * head_size, 512)); const at::cuda::OptionalCUDAGuard device_guard(device_of(key)); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); APHRODITE_DISPATCH_FLOATING_TYPES( key.scalar_type(), "reshape_and_cache_flash", [&] { aphrodite::reshape_and_cache_flash_kernel <<>>( key.data_ptr(), value.data_ptr(), k_cache.data_ptr(), v_cache.data_ptr(), slot_mapping.data_ptr(), block_stride, key_stride, value_stride, num_heads, head_size, block_size); }); } namespace aphrodite { template __global__ void convert_fp8_kernel(const Tin* __restrict__ src_cache, Tout* __restrict__ dst_cache, const float scale, const int64_t block_stride) { const int64_t block_idx = blockIdx.x; for (int i = threadIdx.x; i < block_stride; i += blockDim.x) { int64_t idx = block_idx * block_stride + i; dst_cache[idx] = fp8::scaled_convert(src_cache[idx], scale); } } } // namespace aphrodite #define CALL_CONVERT_FP8(Tout, Tin, KV_DTYPE) \ aphrodite::convert_fp8_kernel \ <<>>( \ reinterpret_cast(src_cache.data_ptr()), \ reinterpret_cast(dst_cache.data_ptr()), scale, block_stride); // Only for testing. void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache, const double scale, const std::string& kv_cache_dtype) { torch::Device src_device = src_cache.device(); torch::Device dst_device = dst_cache.device(); TORCH_CHECK(src_device.is_cuda(), "src must be on a GPU") TORCH_CHECK(dst_device.is_cuda(), "dst must be on a GPU") TORCH_CHECK(src_device.index() == dst_device.index(), "src and dst must be on the same GPU"); at::cuda::OptionalCUDAGuard device_guard(src_device); int64_t num_blocks = src_cache.size(0); int64_t block_stride = src_cache.stride(0); dim3 grid(num_blocks); dim3 block(std::min(block_stride, int64_t(512))); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); if (kv_cache_dtype == "auto") { if (src_cache.dtype() == at::ScalarType::Float) { CALL_CONVERT_FP8(uint8_t, float, aphrodite::Fp8KVCacheDataType::kAuto); } else if (src_cache.dtype() == at::ScalarType::Half) { CALL_CONVERT_FP8(uint8_t, uint16_t, aphrodite::Fp8KVCacheDataType::kAuto); } else if (src_cache.dtype() == at::ScalarType::BFloat16) { CALL_CONVERT_FP8(uint8_t, __nv_bfloat16, aphrodite::Fp8KVCacheDataType::kAuto); } else if (dst_cache.dtype() == at::ScalarType::Float) { CALL_CONVERT_FP8(float, uint8_t, aphrodite::Fp8KVCacheDataType::kAuto); } else if (dst_cache.dtype() == at::ScalarType::Half) { CALL_CONVERT_FP8(uint16_t, uint8_t, aphrodite::Fp8KVCacheDataType::kAuto); } else if (dst_cache.dtype() == at::ScalarType::BFloat16) { CALL_CONVERT_FP8(__nv_bfloat16, uint8_t, aphrodite::Fp8KVCacheDataType::kAuto); } } else if (kv_cache_dtype == "fp8" || kv_cache_dtype == "fp8_e4m3") { if (src_cache.dtype() == at::ScalarType::Float) { CALL_CONVERT_FP8(uint8_t, float, aphrodite::Fp8KVCacheDataType::kFp8E4M3); } else if (src_cache.dtype() == at::ScalarType::Half) { CALL_CONVERT_FP8(uint8_t, uint16_t, aphrodite::Fp8KVCacheDataType::kFp8E4M3); } else if (src_cache.dtype() == at::ScalarType::BFloat16) { CALL_CONVERT_FP8(uint8_t, __nv_bfloat16, aphrodite::Fp8KVCacheDataType::kFp8E4M3); } else if (dst_cache.dtype() == at::ScalarType::Float) { CALL_CONVERT_FP8(float, uint8_t, aphrodite::Fp8KVCacheDataType::kFp8E4M3); } else if (dst_cache.dtype() == at::ScalarType::Half) { CALL_CONVERT_FP8(uint16_t, uint8_t, aphrodite::Fp8KVCacheDataType::kFp8E4M3); } else if (dst_cache.dtype() == at::ScalarType::BFloat16) { CALL_CONVERT_FP8(__nv_bfloat16, uint8_t, aphrodite::Fp8KVCacheDataType::kFp8E4M3); } } else { TORCH_CHECK(false, "Unsupported data type: ", kv_cache_dtype); } }