"""Utility functions used for tests and benchmarks""" from typing import List import numpy as np import torch from .marlin_utils import (GPTQ_MARLIN_TILE, marlin_permute_scales, marlin_zero_points) from .quant_utils import (get_pack_factor, quantize_weights, quantize_weights_with_zp, sort_weights) class MarlinWorkspace: def __init__(self, out_features, min_thread_n, max_parallel): assert (out_features % min_thread_n == 0), ( "out_features = {} is undivisible by min_thread_n = {}".format( out_features, min_thread_n)) max_workspace_size = ((out_features // min_thread_n) * max_parallel) self.scratch = torch.zeros(max_workspace_size, dtype=torch.int, device="cuda") def marlin_permute_weights(q_w, size_k, size_n, perm, tile=GPTQ_MARLIN_TILE): assert q_w.shape == (size_k, size_n) assert size_k % tile == 0, f"size_k = {size_k}, tile = {tile}" assert size_n % tile == 0, f"size_k = {size_n}, tile = {tile}" # Permute weights to 16x64 marlin tiles q_w = q_w.reshape((size_k // tile, tile, size_n // tile, tile)) q_w = q_w.permute((0, 2, 1, 3)) q_w = q_w.reshape((size_k // tile, size_n * tile)) q_w = q_w.reshape((-1, perm.numel()))[:, perm].reshape(q_w.shape) return q_w def marlin_weights(q_w, size_k, size_n, num_bits, perm): # Permute q_w = marlin_permute_weights(q_w, size_k, size_n, perm) # Pack pack_factor = get_pack_factor(num_bits) orig_device = q_w.device q_w = q_w.cpu().numpy().astype(np.uint32) q_packed = np.zeros((q_w.shape[0], q_w.shape[1] // pack_factor), dtype=np.uint32) for i in range(pack_factor): q_packed |= q_w[:, i::pack_factor] << num_bits * i q_packed = torch.from_numpy(q_packed.astype(np.int32)).to(orig_device) return q_packed def get_weight_perm(num_bits: int): perm_list: List[int] = [] for i in range(32): perm1: List[int] = [] col = i // 4 for block in [0, 1]: for row in [ 2 * (i % 4), 2 * (i % 4) + 1, 2 * (i % 4 + 4), 2 * (i % 4 + 4) + 1, ]: perm1.append(16 * row + col + 8 * block) for j in range(4): perm_list.extend([p + 256 * j for p in perm1]) perm = np.array(perm_list) if num_bits == 4: interleave = np.array([0, 2, 4, 6, 1, 3, 5, 7]) elif num_bits == 8: interleave = np.array([0, 2, 1, 3]) else: raise Exception("num_bits must be 4 or 8, got {}".format(num_bits)) perm = perm.reshape((-1, len(interleave)))[:, interleave].ravel() perm = torch.from_numpy(perm) return perm def marlin_quantize(w: torch.Tensor, num_bits: int, group_size: int, act_order: bool): size_k, size_n = w.shape # Normalize group_size if group_size == -1: group_size = size_k assert group_size <= size_k # Quantize (and apply act_order if provided) w_ref, q_w, s, g_idx, rand_perm = quantize_weights(w, num_bits, group_size, act_order) # For act_order, sort the "weights" and "g_idx" so that group ids are # increasing sort_indices = torch.empty(0, dtype=torch.int, device=w.device) if act_order: q_w, g_idx, sort_indices = sort_weights(q_w, g_idx) # Reformat to marlin weight_perm = get_weight_perm(num_bits) marlin_q_w = marlin_weights(q_w, size_k, size_n, num_bits, weight_perm) marlin_s = marlin_permute_scales(s, size_k, size_n, group_size) # Create result res_list = [w_ref, marlin_q_w, marlin_s, g_idx, sort_indices, rand_perm] for i in range(len(res_list)): res_list[i] = res_list[i].to(w.device) return res_list def awq_marlin_quantize(w: torch.Tensor, num_bits: int, group_size: int): size_k, size_n = w.shape # Normalize group_size if group_size == -1: group_size = size_k assert group_size <= size_k # Detect num groups assert size_k % group_size == 0 num_groups = size_k // group_size # Quantize with zp w_ref, q_w, s, zp = quantize_weights_with_zp(w, num_bits, group_size) # Reformat to marlin weight_perm = get_weight_perm(num_bits) marlin_q_w = marlin_weights(q_w, size_k, size_n, num_bits, weight_perm) marlin_s = marlin_permute_scales(s, size_k, size_n, group_size) marlin_zp = marlin_zero_points(zp, num_groups, size_n, num_bits) # Create result res_list = [w_ref, marlin_q_w, marlin_s, marlin_zp] for i in range(len(res_list)): res_list[i] = res_list[i].to(w.device) return res_list