"""Utilities for downloading and initializing model weights.""" import filelock import glob import json import os from collections import defaultdict from typing import Iterator, List, Optional, Tuple, Any from huggingface_hub import snapshot_download from safetensors.torch import load_file, save_file, safe_open import numpy as np import torch from tqdm.auto import tqdm from transformers import PretrainedConfig from aphrodite.common.logger import init_logger from aphrodite.modeling.quantization_utils import get_quant_class from aphrodite.modeling.quantization_utils.base import QuantizationConfig logger = init_logger(__name__) class Disabledtqdm(tqdm): # pylint: disable=inconsistent-mro def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs, disable=True) def get_lock(model_name_or_path: str, cache_dir: Optional[str] = None): lock_dir = cache_dir if cache_dir is not None else "/tmp" lock_file_name = model_name_or_path.replace("/", "-") + ".lock" lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name)) return lock def _shared_pointers(tensors): ptrs = defaultdict(list) for k, v in tensors.items(): ptrs[v.data_ptr()].append(k) failing = [] for _, names in ptrs.items(): if len(names) > 1: failing.append(names) return failing def convert_bin_to_safetensor_file( pt_filename: str, sf_filename: str, ) -> None: loaded = torch.load(pt_filename, map_location="cpu") if "state_dict" in loaded: loaded = loaded["state_dict"] shared = _shared_pointers(loaded) for shared_weights in shared: for name in shared_weights[1:]: loaded.pop(name) # For tensors to be contiguous loaded = {k: v.contiguous() for k, v in loaded.items()} dirname = os.path.dirname(sf_filename) os.makedirs(dirname, exist_ok=True) save_file(loaded, sf_filename, metadata={"format": "pt"}) # check file size sf_size = os.stat(sf_filename).st_size pt_size = os.stat(pt_filename).st_size if (sf_size - pt_size) / pt_size > 0.01: raise RuntimeError(f"""The file size different is more than 1%: - {sf_filename}: {sf_size} - {pt_filename}: {pt_size} """) # check if the tensors are the same reloaded = load_file(sf_filename) for k in loaded: pt_tensor = loaded[k] sf_tensor = reloaded[k] if not torch.equal(pt_tensor, sf_tensor): raise RuntimeError(f"The output tensors do not match for key {k}") # TODO: Move this to other place. def get_quant_config( quantization: str, model_name_or_path: str, hf_config: PretrainedConfig, cache_dir: Optional[str] = None, ) -> QuantizationConfig: if quantization == "gptq" and hasattr(hf_config, "quantization_config"): config = hf_config.quantization_config return get_quant_class(quantization).from_config(config) is_local = os.path.isdir(model_name_or_path) if not is_local: # Download the config files. with get_lock(model_name_or_path, cache_dir): hf_folder = snapshot_download(model_name_or_path, allow_patterns="*.json", cache_dir=cache_dir, tqdm_class=Disabledtqdm) else: hf_folder = model_name_or_path config_files = glob.glob(os.path.join(hf_folder, "*.json")) quant_cls = get_quant_class(quantization) quant_config_files = [ f for f in config_files if any( f.endswith(x) for x in quant_cls.get_config_filenames()) ] if len(quant_config_files) == 0: raise ValueError(f"Cannot find the config file for {quantization}") if len(quant_config_files) > 1: raise ValueError(f"Found multiple config files for {quantization}: " f"{quant_config_files}") quant_config_file = quant_config_files[0] with open(quant_config_file, "r") as f: config = json.load(f) return quant_cls.from_config(config) def prepare_hf_model_weights( model_name_or_path: str, cache_dir: Optional[str] = None, use_safetensors: bool = False, fall_back_to_pt: bool = True, revision: Optional[str] = None, ) -> Tuple[str, List[str], bool]: # Download model weights from huggingface. is_local = os.path.isdir(model_name_or_path) if use_safetensors: allow_patterns = ["*.safetensors"] else: # Some quantized models use .pt files for storing the weights. allow_patterns = ["*.bin", "*.pt"] if not is_local: # Use file lock to prevent multiple processes from # downloading the same model weights at the same time. with get_lock(model_name_or_path, cache_dir): hf_folder = snapshot_download(model_name_or_path, allow_patterns=allow_patterns, cache_dir=cache_dir, tqdm_class=Disabledtqdm, revision=revision) else: hf_folder = model_name_or_path hf_weights_files: List[str] = [] for pattern in allow_patterns: hf_weights_files += glob.glob(os.path.join(hf_folder, pattern)) if not use_safetensors: # exclude unneeded files blacklist = [ "training_args.bin", "optimizer.bin", "optimizer.pt", "scheduler.pt", "scaler.pt", "trainer_state.json", ] hf_weights_files = [ f for f in hf_weights_files if not any(f.endswith(x) for x in blacklist) ] if len(hf_weights_files) == 0 and use_safetensors and fall_back_to_pt: return prepare_hf_model_weights(model_name_or_path, cache_dir=cache_dir, use_safetensors=False, fall_back_to_pt=False, revision=revision) if len(hf_weights_files) == 0: raise RuntimeError( f"Cannot find any model weights with `{model_name_or_path}`") return hf_folder, hf_weights_files, use_safetensors def hf_model_weights_iterator( model_name_or_path: str, cache_dir: Optional[str] = None, load_format: str = "auto", revision: Optional[str] = None, ) -> Iterator[Tuple[str, torch.Tensor]]: use_safetensors = False use_np_cache = False fall_back_to_pt = False if load_format == "auto": use_safetensors = True fall_back_to_pt = True elif load_format == "safetensors": use_safetensors = True elif load_format == "pt": pass elif load_format == "npcache": use_np_cache = True else: raise ValueError(f"Unknown load_format: {load_format}") hf_folder, hf_weights_files, use_safetensors = prepare_hf_model_weights( model_name_or_path, cache_dir=cache_dir, use_safetensors=use_safetensors, fall_back_to_pt=fall_back_to_pt, revision=revision) if use_np_cache: # Currently np_cache only support *.bin checkpoints assert use_safetensors is False # Convert the model weights from torch tensors to numpy arrays for # faster loading. np_folder = os.path.join(hf_folder, "np") os.makedirs(np_folder, exist_ok=True) weight_names_file = os.path.join(np_folder, "weight_names.json") # Use file lock to prevent multiple processes from # dumping the same model weights to numpy at the same time. with get_lock(model_name_or_path, cache_dir): if not os.path.exists(weight_names_file): weight_names = [] for bin_file in hf_weights_files: state = torch.load(bin_file, map_location="cpu") for name, param in state.items(): param_path = os.path.join(np_folder, name) with open(param_path, "wb") as f: np.save(f, param.cpu().detach().numpy()) weight_names.append(name) with open(weight_names_file, "w") as f: json.dump(weight_names, f) with open(weight_names_file, "r") as f: weight_names = json.load(f) for name in weight_names: param_path = os.path.join(np_folder, name) with open(param_path, "rb") as f: param = np.load(f) yield name, torch.from_numpy(param) elif use_safetensors: for st_file in hf_weights_files: with safe_open(st_file, framework="pt") as f: for name in f.keys(): param = f.get_slice(name) yield name, param else: for bin_file in hf_weights_files: state = torch.load(bin_file, map_location="cpu") for name, param in state.items(): yield name, param del state torch.cuda.empty_cache() def convert_pyslice_to_tensor(x: Any) -> torch.Tensor: """convert PySafeSlice object from safetensors to torch.Tensor PySafeSlice object supports indexing, which is done before loading the actual tensor and can reduce the amount of memory being read into the memory. However, it does not support more advanced functionalities like `.view()` or `.t()`. Therefore, if we need to modify the loaded tensor with these more complicated operators, we need to convert to tensor first. """ if not isinstance(x, torch.Tensor): x = x[:] return x def load_padded_tensor_parallel_vocab( param: torch.Tensor, loaded_weight: Any, # `torch.Tensor` or `PySafeSlice` tensor_model_parallel_rank: int, ) -> None: shard_size = param.shape[0] start_idx = tensor_model_parallel_rank * shard_size end_idx = (tensor_model_parallel_rank + 1) * shard_size loaded_weight = loaded_weight[start_idx:end_idx] loaded_weight = convert_pyslice_to_tensor(loaded_weight) param.data[:loaded_weight.shape[0]].copy_(loaded_weight) def load_tensor_parallel_weights( param: torch.Tensor, loaded_weight: Any, # `torch.Tensor` or `PySafeSlice` param_name: str, column_parallel_weight_names: List[str], row_parallel_weight_names: List[str], tensor_model_parallel_rank: int, ) -> None: for p in column_parallel_weight_names: if p in param_name: shard_size = param.shape[0] start_idx = tensor_model_parallel_rank * shard_size end_idx = (tensor_model_parallel_rank + 1) * shard_size loaded_weight = loaded_weight[start_idx:end_idx] break for p in row_parallel_weight_names: if p in param_name: shard_size = param.shape[-1] start_idx = tensor_model_parallel_rank * shard_size end_idx = (tensor_model_parallel_rank + 1) * shard_size if isinstance(loaded_weight, torch.Tensor): loaded_weight = loaded_weight[..., start_idx:end_idx] else: index = [slice(None)] * (len(loaded_weight.get_shape()) - 1) + [slice(start_idx, end_idx)] loaded_weight = loaded_weight[index] break loaded_weight = convert_pyslice_to_tensor(loaded_weight) assert param.shape == loaded_weight.shape, ( f"{param_name} shape mismatch between model and checkpoint: " f"{param.shape} != {loaded_weight.shape}") param.data.copy_(loaded_weight) def initialize_dummy_weights( model: torch.nn.Module, low: float = -1e-3, high: float = 1e-3, ) -> None: """Initialize model weights with random values. The model weights must be randomly initialized for accurate performance measurements. Additionally, the model weights should not cause NaNs in the forward pass. We empirically found that initializing the weights with values between -1e-3 and 1e-3 works well for most models. """ for param in model.state_dict().values(): if torch.is_floating_point(param): param.data.uniform_(low, high) def get_parallel_weight(model: torch.nn.Module): if model.quant_config is None: column_weight_suffixes = ["weight", "bias"] row_weight_suffixes = ["weight"] ignore_weight_suffixes = [] else: column_weight_suffixes = model.quant_config.get_column_tp_tensor_names( ) row_weight_suffixes = model.quant_config.get_row_tp_tensor_names() ignore_weight_suffixes = model.quant_config.get_ignore_tensor_names() column_parallel_weights: List[str] = [] for layer in model.column_parallel_layers: for suffix in column_weight_suffixes: column_parallel_weights.append(f"{layer}.{suffix}") row_parallel_weights: List[str] = [] for layer in model.row_parallel_layers: for suffix in row_weight_suffixes: row_parallel_weights.append(f"{layer}.{suffix}") if hasattr(model, "parallel_vocab_layers"): for layer in model.parallel_vocab_layers: for suffix in ["weight", "bias"]: column_parallel_weights.append(f"{layer}.{suffix}") return column_parallel_weights, row_parallel_weights, ignore_weight_suffixes