# coding=utf-8 # Adapted from # https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py # Copyright (c) Alibaba Cloud. # LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE """Inference-only QWen model compatible with HuggingFace weights.""" from typing import Any, Dict, List, Optional, Tuple import torch from torch import nn from aphrodite.modeling.metadata import InputMetadata from aphrodite.modeling.layers.activation import SiluAndMul from aphrodite.modeling.layers.attention import PagedAttention from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import ( LinearMethodBase, MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ColumnParallelLinear, ) from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler, QuantSampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( VocabParallelEmbedding, ParallelLMHead, ) from aphrodite.modeling.megatron.parallel_state import ( get_tensor_model_parallel_world_size, ) from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.modeling.hf_downloader import ( default_weight_loader, hf_model_weights_iterator, ) from aphrodite.common.sequence import SamplerOutput from aphrodite.transformers_utils.configs.qwen import QWenConfig KVCache = Tuple[torch.Tensor, torch.Tensor] class QWenMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str = "silu", linear_method: Optional[LinearMethodBase] = None, ): super().__init__() if (linear_method is not None and not linear_method.quant_config.merge_weight()): self.merge_weight = False self.w2 = ColumnParallelLinear( hidden_size, intermediate_size, bias=False, linear_method=linear_method, ) self.w1 = ColumnParallelLinear( hidden_size, intermediate_size, bias=False, linear_method=linear_method, ) else: self.merge_weight = True self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, linear_method=linear_method, ) self.c_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, linear_method=linear_method, ) if hidden_act != "silu": raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.") self.act_fn = SiluAndMul() def forward(self, x): if self.merge_weight: gate_up, _ = self.gate_up_proj(x) else: up, _ = self.w1(x) gate, _ = self.w2(x) gate_up = torch.cat([gate, up], dim=-1) x = self.act_fn(gate_up) x, _ = self.c_proj(x) return x class QWenAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, max_position_embeddings: int, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.hidden_size = hidden_size tensor_model_parallel_world_size = ( get_tensor_model_parallel_world_size()) self.total_num_heads = num_heads assert self.total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = (self.total_num_heads // tensor_model_parallel_world_size) self.head_dim = hidden_size // self.total_num_heads self.c_attn = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, bias=True, linear_method=linear_method, ) self.c_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, linear_method=linear_method, ) self.scaling = self.head_dim**-0.5 is_neox_style = (True if linear_method is None or linear_method.quant_config.rope_style() is None else linear_method.quant_config.rope_style()) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, is_neox_style=is_neox_style, ) self.attn = PagedAttention(self.num_heads, self.head_dim, self.scaling) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, ) -> torch.Tensor: qkv, _ = self.c_attn(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self.rotary_emb(positions, q, k) k_cache, v_cache = kv_cache attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata) output, _ = self.c_proj(attn_output) return output class QWenBlock(nn.Module): def __init__( self, config: QWenConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) self.attn = QWenAttention( config.hidden_size, config.num_attention_heads, config.max_position_embeddings, rope_theta=rope_theta, rope_scaling=rope_scaling, linear_method=linear_method, ) self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.mlp = QWenMLP( config.hidden_size, config.intermediate_size // 2, linear_method=linear_method, ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.ln_1(hidden_states) else: hidden_states, residual = self.ln_1(hidden_states, residual) hidden_states = self.attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, input_metadata=input_metadata, ) # Fully Connected hidden_states, residual = self.ln_2(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class QWenModel(nn.Module): def __init__( self, config: QWenConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.config = config self.vocab_size = config.vocab_size self.wte = VocabParallelEmbedding(config.vocab_size, config.hidden_size, linear_method=linear_method) self.h = nn.ModuleList([ QWenBlock(config, linear_method) for _ in range(config.num_hidden_layers) ]) self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[KVCache], input_metadata: InputMetadata, ) -> torch.Tensor: hidden_states = self.wte(input_ids) residual = None for i in range(len(self.h)): layer = self.h[i] hidden_states, residual = layer( positions, hidden_states, kv_caches[i], input_metadata, residual, ) hidden_states, _ = self.ln_f(hidden_states, residual) return hidden_states class QWenLMHeadModel(nn.Module): def __init__( self, config: QWenConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.config = config self.linear_method = linear_method self.transformer = QWenModel(config, linear_method) self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, linear_method=linear_method) self.sampler = Sampler(config.vocab_size) self.quant_sampler = QuantSampler(config.vocab_size) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[KVCache], input_metadata: InputMetadata, ) -> torch.Tensor: hidden_states = self.transformer(input_ids, positions, kv_caches, input_metadata) return hidden_states def sample( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: if (self.linear_method is not None and not self.linear_method.quant_config.merge_weight()): next_tokens = self.quant_sampler(self.lm_head(hidden_states), sampling_metadata) else: next_tokens = self.sampler(self.lm_head.weight, hidden_states, sampling_metadata) return next_tokens def load_weights( self, model_name_or_path: str, cache_dir: Optional[str] = None, load_format: str = "auto", revision: Optional[str] = None, ): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("gate_up_proj", "w2", 0), ("gate_up_proj", "w1", 1), ] if (self.linear_method is not None and not self.linear_method.quant_config.merge_weight()): stacked_params_mapping = [] params_dict = dict(self.named_parameters()) for name, loaded_weight in hf_model_weights_iterator( model_name_or_path, cache_dir, load_format, revision, self.config): if "rotary_emb.inv_freq" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)