import time from contextlib import contextmanager from typing import Dict, List, Optional, Tuple import torch from aphrodite.common.sequence import (CompletionSequenceGroupOutput, Logprob, SamplerOutput, SequenceGroupMetadata, SequenceOutput) SeqId = int def get_all_num_logprobs( seq_group_metadata_list: List[SequenceGroupMetadata]) -> List[int]: """Given a list of SequenceGroupMetadata, create a list of all num_logprobs. If the sampling params do not call for any logprobs, return 0 for that sequence. """ all_num_logprobs = [] for seq_group_metadata in seq_group_metadata_list: num_logprobs = seq_group_metadata.sampling_params.logprobs if seq_group_metadata.sampling_params.logprobs is None: num_logprobs = 0 all_num_logprobs.append(num_logprobs) return all_num_logprobs def get_sampled_token_logprobs( # shape [num_steps, batch_size, vocab_size] logprob_tensor: torch.Tensor, sampled_token_ids: torch.Tensor, # shape [num_steps, batch_size] ) -> Tuple[torch.Tensor, torch.Tensor]: """Get the logprobs for the sampled tokens. Returns the ranks and logprobs. """ num_steps, batch_size, vocab_size = logprob_tensor.shape selected_logprobs = logprob_tensor[torch.arange(num_steps).unsqueeze(1), torch.arange(batch_size), sampled_token_ids, ] expanded_selected_logprobs = selected_logprobs.unsqueeze(-1).expand( -1, -1, vocab_size) sampled_token_ids_ranks = (logprob_tensor >= expanded_selected_logprobs).sum(-1) return sampled_token_ids_ranks, selected_logprobs def create_sequence_group_output( token_id: int, token_id_logprob_rank: int, token_id_logprob: float, seq_id: SeqId, topk_token_ids: List[Optional[int]], topk_logprobs: List[Optional[float]], ) -> CompletionSequenceGroupOutput: """Create a SequenceGroupOutput given the sampling results. Args: token_id (int): The sampled token for the sequence. token_id_logprob_rank (int): The logprob rank of the sampled token. token_id_logprob (float): The logprob value of the sampled token. seq_id (int): The sequence id. topk_token_ids (List[int]): The list of top-k token ids. topk_logprobs (List[float]): The list of top-k logprobs. """ # Aphrodite logprobs always include the sampled token. In addition, the # user may request topk-logprobs (where top-k varies per user up to # max_logprobs). logprobs: Dict[Optional[int], Logprob] = { token_id: Logprob( logprob=token_id_logprob, rank=token_id_logprob_rank, ), } logprobs.update({ topk_token_ids[topk_logprob_index]: Logprob( logprob=topk_logprobs[topk_logprob_index], rank=topk_logprob_index + 1, ) for topk_logprob_index, _ in enumerate(topk_token_ids) }) return CompletionSequenceGroupOutput( samples=[ SequenceOutput(parent_seq_id=seq_id, output_token=token_id, logprobs=logprobs) ], # TODO add prompt logprobs support. prompt_logprobs=None, ) def split_batch_by_proposal_len( seq_group_metadata_list: List[SequenceGroupMetadata], proposal_lens: List[int], select_proposal_len_zero: bool ) -> Tuple[List[SequenceGroupMetadata], List[int]]: """Utility function that splits a batch based on whether the proposal len is zero or not. We should remove this once Aphrodite supports per-sequence proposal lens in a batch. """ if select_proposal_len_zero: predicate = lambda proposal_len: proposal_len == 0 else: predicate = lambda proposal_len: proposal_len != 0 indices = [ i for i, (_, proposal_len ) in enumerate(zip(seq_group_metadata_list, proposal_lens)) if predicate(proposal_len) ] seq_groups = [ seq_group for seq_group, proposal_len in zip( seq_group_metadata_list, proposal_lens) if predicate(proposal_len) ] return seq_groups, indices def sampler_output_to_torch( sampler_output_list: List[SamplerOutput], sampler_transposed: bool ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Utility function which converts a list of SamplerOutput to tensors. sampler_transposed here is used as the indicator for whether we need do additional tensor transpose logic here. Returns: sampled_token_ids: torch.Tensor shape: [batch_size, len(sampler_output_list)] sampled_token_probs: torch.Tensor shape: [batch_size, len(sampler_output_list), vocab_size] """ # shape: [batch_size, num_sampler_output, vocab_size] sampled_token_probs = torch.stack( [ sampler_output.sampled_token_probs for sampler_output in sampler_output_list ], dim=0, ) if sampler_transposed: sampled_token_probs = sampled_token_probs.transpose(0, 1) # shape: [batch_size, num_sampler_output, vocab_size] sampled_token_logprobs = torch.stack( [sampler_output.logprobs for sampler_output in sampler_output_list], dim=0, ) if sampler_transposed: sampled_token_logprobs = sampled_token_logprobs.transpose(0, 1) # shape: [batch_size, num_sampler_output] sampled_token_ids = torch.stack( [ sampler_output.sampled_token_ids.flatten() for sampler_output in sampler_output_list ], dim=0, ) if sampler_transposed: sampled_token_ids = sampled_token_ids.transpose(0, 1) return sampled_token_ids, sampled_token_probs, sampled_token_logprobs def maybe_mock_device_tensors(sampler_output: SamplerOutput, batch_size: int, vocab_size: int, device: str) -> None: """Helper method which mocks out the GPU tensors in SamplerOutput with dummy values. """ values = [ sampler_output.sampled_token_probs, sampler_output.sampled_token_ids ] assert all(v is None for v in values) or not any(v is None for v in values) if not any(v is None for v in values): # Do nothing if the tensors are already created (usually in unit tests). return # Softmax to ensure valid probs. sampler_output.sampled_token_probs = torch.nn.functional.softmax( torch.rand(batch_size, vocab_size, dtype=torch.float32, device=device), dim=-1) sampler_output.sampled_token_ids = torch.randint(low=10, high=100, size=(batch_size, ), dtype=torch.long, device=device) @contextmanager def nvtx_range(msg, *args, **kwargs): """ Context manager / decorator that pushes an NVTX range at the beginning of its scope, and pops it at the end. If extra arguments are given, they are passed as arguments to msg.format(). If running with cuda graphs, you must enable nsys cuda graph profiling. Arguments: msg (string): message to associate with the range """ torch.cuda.nvtx.range_push(msg.format(*args, **kwargs)) try: yield finally: torch.cuda.nvtx.range_pop() class Timer: """Basic timer context manager for measuring CPU time. """ def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time_s = self.end_time - self.start_time self.elapsed_time_ms = self.elapsed_time_s * 1000