import argparse import dataclasses import json from dataclasses import dataclass from typing import (TYPE_CHECKING, Dict, List, Mapping, Optional, Tuple, Type, Union) from loguru import logger from aphrodite.common.config import (CacheConfig, DecodingConfig, DeviceConfig, EngineConfig, LoadConfig, LoRAConfig, ModelConfig, MultiModalConfig, ParallelConfig, PromptAdapterConfig, SchedulerConfig, SpeculativeConfig, TokenizerPoolConfig) from aphrodite.common.utils import FlexibleArgumentParser, is_cpu from aphrodite.executor.executor_base import ExecutorBase from aphrodite.quantization import QUANTIZATION_METHODS from aphrodite.transformers_utils.utils import check_gguf_file if TYPE_CHECKING: from aphrodite.transformers_utils.tokenizer_group import BaseTokenizerGroup def nullable_kvs(val: str) -> Optional[Mapping[str, int]]: if len(val) == 0: return None out_dict: Dict[str, int] = {} for item in val.split(","): try: key, value = item.split("=") except TypeError as exc: msg = "Each item should be in the form KEY=VALUE" raise ValueError(msg) from exc try: out_dict[key] = int(value) except ValueError as exc: msg = f"Failed to parse value of item {key}={value}" raise ValueError(msg) from exc return out_dict @dataclass class EngineArgs: """Arguments for Aphrodite engine.""" # Model Options model: str seed: int = 0 served_model_name: Optional[Union[str, List[str]]] = None tokenizer: Optional[str] = None revision: Optional[str] = None code_revision: Optional[str] = None tokenizer_revision: Optional[str] = None tokenizer_mode: str = "auto" trust_remote_code: bool = False download_dir: Optional[str] = None max_model_len: Optional[int] = None max_context_len_to_capture: Optional[int] = None max_seq_len_to_capture: int = 8192 rope_scaling: Optional[dict] = None rope_theta: Optional[float] = None model_loader_extra_config: Optional[dict] = None enforce_eager: Optional[bool] = None skip_tokenizer_init: bool = False tokenizer_pool_size: int = 0 # Note: Specifying a tokenizer pool by passing a class # is intended for expert use only. The API may change without # notice. tokenizer_pool_type: Union[str, Type["BaseTokenizerGroup"]] = "ray" tokenizer_pool_extra_config: Optional[dict] = None limit_mm_per_prompt: Optional[Mapping[str, int]] = None max_logprobs: int = 10 # OpenAI default is 5, setting to 10 because ST # Device Options device: str = "auto" # Load Options load_format: str = "auto" dtype: str = "auto" ignore_patterns: Optional[Union[str, List[str]]] = None # Parallel Options worker_use_ray: Optional[bool] = False tensor_parallel_size: int = 1 pipeline_parallel_size: int = 1 ray_workers_use_nsight: bool = False disable_custom_all_reduce: bool = False # Note: Specifying a custom executor backend by passing a class # is intended for expert use only. The API may change without # notice. distributed_executor_backend: Optional[Union[str, Type[ExecutorBase]]] = None max_parallel_loading_workers: Optional[int] = None # Quantization Options quantization: Optional[str] = None quantization_param_path: Optional[str] = None preemption_mode: Optional[str] = None deepspeed_fp_bits: Optional[int] = None # Cache Options kv_cache_dtype: str = "auto" block_size: int = 16 enable_prefix_caching: Optional[bool] = False num_gpu_blocks_override: Optional[int] = None disable_sliding_window: bool = False gpu_memory_utilization: float = 0.90 swap_space: float = 4 # GiB cpu_offload_gb: float = 0 # GiB # Scheduler Options use_v2_block_manager: bool = False scheduler_delay_factor: float = 0.0 enable_chunked_prefill: bool = False guided_decoding_backend: str = 'outlines' max_num_batched_tokens: Optional[int] = None max_num_seqs: int = 256 num_scheduler_steps: int = 1 # Speculative Decoding Options num_lookahead_slots: int = 0 speculative_model: Optional[str] = None speculative_model_quantization: Optional[str] = None num_speculative_tokens: Optional[int] = None speculative_max_model_len: Optional[int] = None ngram_prompt_lookup_max: Optional[int] = None ngram_prompt_lookup_min: Optional[int] = None speculative_draft_tensor_parallel_size: Optional[int] = None speculative_disable_by_batch_size: Optional[int] = None spec_decoding_acceptance_method: str = 'rejection_sampler' typical_acceptance_sampler_posterior_threshold: Optional[float] = None typical_acceptance_sampler_posterior_alpha: Optional[float] = None disable_logprobs_during_spec_decoding: Optional[bool] = None # Adapter Options enable_lora: bool = False max_loras: int = 1 max_lora_rank: int = 16 lora_extra_vocab_size: int = 256 lora_dtype: str = "auto" max_cpu_loras: Optional[int] = None long_lora_scaling_factors: Optional[Tuple[float]] = None fully_sharded_loras: bool = False qlora_adapter_name_or_path: Optional[str] = None enable_prompt_adapter: bool = False max_prompt_adapters: int = 1 max_prompt_adapter_token: int = 0 # Log Options disable_log_stats: bool = False def __post_init__(self): if self.tokenizer is None: self.tokenizer = self.model if is_cpu(): self.distributed_executor_backend = None @staticmethod def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: """Shared CLI arguments for the Aphrodite engine.""" # Model Options parser.add_argument( "--model", type=str, default="EleutherAI/pythia-70m-deduped", help="Category: Model Options\n" "name or path of the huggingface model to use", ) parser.add_argument("--seed", type=int, default=EngineArgs.seed, help="Category: Model Options\n" "random seed") parser.add_argument( "--served-model-name", nargs="+", type=str, default=None, help="Category: API Options\n" "The model name(s) used in the API. If multiple " "names are provided, the server will respond to any " "of the provided names. The model name in the model " "field of a response will be the first name in this " "list. If not specified, the model name will be the " "same as the `--model` argument. Noted that this name(s)" "will also be used in `model_name` tag content of " "prometheus metrics, if multiple names provided, metrics" "tag will take the first one.") parser.add_argument( "--tokenizer", type=str, default=EngineArgs.tokenizer, help="Category: Model Options\n" "name or path of the huggingface tokenizer to use", ) parser.add_argument( "--revision", type=str, default=None, help="Category: Model Options\n" "the specific model version to use. It can be a branch " "name, a tag name, or a commit id. If unspecified, will use " "the default version.", ) parser.add_argument( "--code-revision", type=str, default=None, help="Category: Model Options\n" "the specific revision to use for the model code on " "Hugging Face Hub. It can be a branch name, a tag name, or a " "commit id. If unspecified, will use the default version.", ) parser.add_argument( "--tokenizer-revision", type=str, default=None, help="Category: Model Options\n" "the specific tokenizer version to use. It can be a branch " "name, a tag name, or a commit id. If unspecified, will use " "the default version.", ) parser.add_argument( "--tokenizer-mode", type=str, default=EngineArgs.tokenizer_mode, choices=['auto', 'slow', 'mistral'], help='The tokenizer mode.\n\n* "auto" will use the ' 'fast tokenizer if available.\n* "slow" will ' 'always use the slow tokenizer. \n* ' '"mistral" will always use the `mistral_common` tokenizer.') parser.add_argument( "--trust-remote-code", action="store_true", help="Category: Model Options\n" "trust remote code from huggingface", ) parser.add_argument( "--download-dir", type=str, default=EngineArgs.download_dir, help="Category: Model Options\n" "directory to download and load the weights, " "default to the default cache dir of " "huggingface", ) parser.add_argument( "--max-model-len", type=int, default=EngineArgs.max_model_len, help="Category: Model Options\n" "model context length. If unspecified, " "will be automatically derived from the model.", ) parser.add_argument("--max-context-len-to-capture", type=int, default=EngineArgs.max_context_len_to_capture, help="Category: Model Options\n" "Maximum context length covered by CUDA " "graphs. When a sequence has context length " "larger than this, we fall back to eager mode. " "(DEPRECATED. Use --max-seq_len-to-capture instead" ")") parser.add_argument("--max-seq_len-to-capture", type=int, default=EngineArgs.max_seq_len_to_capture, help="Category: Model Options\n" "Maximum sequence length covered by CUDA " "graphs. When a sequence has context length " "larger than this, we fall back to eager mode.") parser.add_argument('--rope-scaling', default=None, type=json.loads, help='Category: Model Options\n' 'RoPE scaling configuration in JSON format. ' 'For example, {"type":"dynamic","factor":2.0}') parser.add_argument('--rope-theta', default=None, type=float, help='Category: Model Options\n' 'RoPE theta. Use with `rope_scaling`. In ' 'some cases, changing the RoPE theta improves the ' 'performance of the scaled model.') parser.add_argument("--model-loader-extra-config", type=str, default=EngineArgs.model_loader_extra_config, help="Category: Model Options\n" "Extra config for model loader. " "This will be passed to the model loader " "corresponding to the chosen load_format. " "This should be a JSON string that will be " "parsed into a dictionary.") parser.add_argument( "--enforce-eager", action=StoreBoolean, default=EngineArgs.enforce_eager, nargs="?", const="True", help="Category: Model Options\n" "Always use eager-mode PyTorch. If False, " "will use eager mode and CUDA graph in hybrid " "for maximal performance and flexibility.", ) parser.add_argument("--skip-tokenizer-init", action="store_true", help="Category: Model Options\n" "Skip initialization of tokenizer and detokenizer") parser.add_argument("--tokenizer-pool-size", type=int, default=EngineArgs.tokenizer_pool_size, help="Category: Model Options\n" "Size of tokenizer pool to use for " "asynchronous tokenization. If 0, will " "use synchronous tokenization.") parser.add_argument("--tokenizer-pool-type", type=str, default=EngineArgs.tokenizer_pool_type, help="Category: Model Options\n" "The type of tokenizer pool to use for " "asynchronous tokenization. Ignored if " "tokenizer_pool_size is 0.") parser.add_argument("--tokenizer-pool-extra-config", type=str, default=EngineArgs.tokenizer_pool_extra_config, help="Category: Model Options\n" "Extra config for tokenizer pool. " "This should be a JSON string that will be " "parsed into a dictionary. Ignored if " "tokenizer_pool_size is 0.") # Multimodal related configs parser.add_argument( '--limit-mm-per-prompt', type=nullable_kvs, default=EngineArgs.limit_mm_per_prompt, # The default value is given in # MultiModalRegistry.init_mm_limits_per_prompt help=('For each multimodal plugin, limit how many ' 'input instances to allow for each prompt. ' 'Expects a comma-separated list of items, ' 'e.g.: `image=16,video=2` allows a maximum of 16 ' 'images and 2 videos per prompt. Defaults to 1 for ' 'each modality.')) parser.add_argument( "--max-logprobs", type=int, default=EngineArgs.max_logprobs, help="Category: Model Options\n" "maximum number of log probabilities to " "return.", ) # Device Options parser.add_argument( "--device", type=str, default=EngineArgs.device, choices=[ "auto", "cuda", "neuron", "cpu", "openvino", "tpu", "xpu" ], help=("Category: Model Options\n" "Device to use for model execution."), ) # Load Options parser.add_argument( '--load-format', type=str, default=EngineArgs.load_format, choices=[ 'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer', 'sharded_state', 'bitsandbytes', ], help='Category: Model Options\n' 'The format of the model weights to load.\n\n' '* "auto" will try to load the weights in the safetensors format ' 'and fall back to the pytorch bin format if safetensors format ' 'is not available.\n' '* "pt" will load the weights in the pytorch bin format.\n' '* "safetensors" will load the weights in the safetensors format.\n' '* "npcache" will load the weights in pytorch format and store ' 'a numpy cache to speed up the loading.\n' '* "dummy" will initialize the weights with random values, ' 'which is mainly for profiling.\n' '* "tensorizer" will load the weights using tensorizer from ' 'CoreWeave. See the Tensorize Aphrodite Model script in the ' 'Examples section for more information.\n' '* "bitsandbytes" will load the weights using bitsandbytes ' 'quantization.\n') parser.add_argument( '--dtype', type=str, default=EngineArgs.dtype, choices=[ 'auto', 'half', 'float16', 'bfloat16', 'float', 'float32' ], help='Category: Model Options\n' 'Data type for model weights and activations.\n\n' '* "auto" will use FP16 precision for FP32 and FP16 models, and ' 'BF16 precision for BF16 models.\n' '* "half" for FP16. Recommended for AWQ quantization.\n' '* "float16" is the same as "half".\n' '* "bfloat16" for a balance between precision and range.\n' '* "float" is shorthand for FP32 precision.\n' '* "float32" for FP32 precision.') parser.add_argument( '--ignore-patterns', action="append", type=str, default=[], help="Category: Model Options\n" "The pattern(s) to ignore when loading the model." "Defaults to 'original/**/*' to avoid repeated loading of llama's " "checkpoints.") # Parallel Options parser.add_argument( '--worker-use-ray', action='store_true', help='Category: Parallel Options\n' 'Deprecated, use --distributed-executor-backend=ray.') parser.add_argument( "--tensor-parallel-size", "-tp", type=int, default=EngineArgs.tensor_parallel_size, help="Category: Parallel Options\n" "number of tensor parallel replicas, i.e. the number of GPUs " "to use.") parser.add_argument( "--pipeline-parallel-size", "-pp", type=int, default=EngineArgs.pipeline_parallel_size, help="Category: Parallel Options\n" "number of pipeline stages. Currently not supported.") parser.add_argument( "--ray-workers-use-nsight", action="store_true", help="Category: Parallel Options\n" "If specified, use nsight to profile ray workers", ) parser.add_argument( "--disable-custom-all-reduce", action="store_true", default=EngineArgs.disable_custom_all_reduce, help="Category: Model Options\n" "See ParallelConfig", ) parser.add_argument( '--distributed-executor-backend', choices=['ray', 'mp'], default=EngineArgs.distributed_executor_backend, help='Category: Parallel Options\n' 'Backend to use for distributed serving. When more than 1 GPU ' 'is used, will be automatically set to "ray" if installed ' 'or "mp" (multiprocessing) otherwise.') parser.add_argument( "--max-parallel-loading-workers", type=int, default=EngineArgs.max_parallel_loading_workers, help="Category: Parallel Options\n" "load model sequentially in multiple batches, " "to avoid RAM OOM when using tensor " "parallel and large models", ) # Quantization Options parser.add_argument( "--quantization", "-q", type=str, choices=[*QUANTIZATION_METHODS, None], default=EngineArgs.quantization, help="Category: Quantization Options\n" "Method used to quantize the weights. If " "None, we first check the `quantization_config` " "attribute in the model config file. If that is " "None, we assume the model weights are not " "quantized and use `dtype` to determine the data " "type of the weights.", ) parser.add_argument( '--quantization-param-path', type=str, default=None, help='Category: Quantization Options\n' 'Path to the JSON file containing the KV cache ' 'scaling factors. This should generally be supplied, when ' 'KV cache dtype is FP8. Otherwise, KV cache scaling factors ' 'default to 1.0, which may cause accuracy issues. ' 'FP8_E5M2 (without scaling) is only supported on cuda version' 'greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead ' 'supported for common inference criteria. ') parser.add_argument( '--preemption-mode', type=str, default=None, help='Category: Scheduler Options\n' 'If \'recompute\', the engine performs preemption by block ' 'swapping; If \'swap\', the engine performs preemption by block ' 'swapping.') parser.add_argument("--deepspeed-fp-bits", type=int, default=None, help="Category: Quantization Options\n" "Number of floating bits to use for the deepseed " "quantization. Supported bits are: 4, 6, 8, 12. ") # Cache Options parser.add_argument( '--kv-cache-dtype', type=str, choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'], default=EngineArgs.kv_cache_dtype, help='Category: Cache Options\n' 'Data type for kv cache storage. If "auto", will use model ' 'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ' 'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)') parser.add_argument( "--block-size", type=int, default=EngineArgs.block_size, choices=[8, 16, 32, 128, 256, 512, 1024, 2048], help="Category: Cache Options\n" "token block size", ) parser.add_argument( "--enable-prefix-caching", "--context-shift", action="store_true", help="Category: Cache Options\n" "Enable automatic prefix caching.", ) parser.add_argument( "--num-gpu-blocks-override", type=int, default=None, help="Category: Cache Options Options\n" "If specified, ignore GPU profiling result and use this " "number of GPU blocks. Used for testing preemption.") parser.add_argument('--disable-sliding-window', action='store_true', help='Category: KV Cache Options\n' 'Disables sliding window, ' 'capping to sliding window size') parser.add_argument( "--gpu-memory-utilization", "-gmu", type=float, default=EngineArgs.gpu_memory_utilization, help="Category: Cache Options\n" "The fraction of GPU memory to be used for " "the model executor, which can range from 0 to 1." "If unspecified, will use the default value of 0.9.", ) parser.add_argument( "--swap-space", type=float, default=EngineArgs.swap_space, help="Category: Cache Options\n" "CPU swap space size (GiB) per GPU", ) parser.add_argument( '--cpu-offload-gb', type=float, default=0, help='Category: Cache Options\n' 'The space in GiB to offload to CPU, per GPU. ' 'Default is 0, which means no offloading. Intuitively, ' 'this argument can be seen as a virtual way to increase ' 'the GPU memory size. For example, if you have one 24 GB ' 'GPU and set this to 10, virtually you can think of it as ' 'a 34 GB GPU. Then you can load a 13B model with BF16 weight,' 'which requires at least 26GB GPU memory. Note that this ' 'requires fast CPU-GPU interconnect, as part of the model is' 'loaded from CPU memory to GPU memory on the fly in each ' 'model forward pass.') # Scheduler Options parser.add_argument("--use-v2-block-manager", action="store_true", help="Category: Scheduler Options\n" "Use the v2 block manager.") parser.add_argument( "--scheduler-delay-factor", "-sdf", type=float, default=EngineArgs.scheduler_delay_factor, help="Category: Scheduler Options\n" "Apply a delay (of delay factor multiplied by previous " "prompt latency) before scheduling next prompt.") parser.add_argument( "--enable-chunked-prefill", action=StoreBoolean, default=EngineArgs.enable_chunked_prefill, nargs="?", const="True", help="Category: Scheduler Options\n" "If True, the prefill requests can be chunked based on the " "max_num_batched_tokens.") parser.add_argument( '--guided-decoding-backend', type=str, default='outlines', choices=['outlines', 'lm-format-enforcer'], help='Category: Scheduler Options\n' 'Which engine will be used for guided decoding' ' (JSON schema / regex etc) by default. Currently support ' 'https://github.com/outlines-dev/outlines and ' 'https://github.com/noamgat/lm-format-enforcer.' ' Can be overridden per request via guided_decoding_backend' ' parameter.') parser.add_argument( "--max-num-batched-tokens", type=int, default=EngineArgs.max_num_batched_tokens, help="Category: KV Cache Options\n" "maximum number of batched tokens per " "iteration", ) parser.add_argument( "--max-num-seqs", type=int, default=EngineArgs.max_num_seqs, help="Category: API Options\n" "maximum number of sequences per iteration", ) parser.add_argument('--num-scheduler-steps', type=int, default=1, help=('Maximum number of forward steps per ' 'scheduler call.')) # Speculative Decoding Options parser.add_argument("--num-lookahead-slots", type=int, default=EngineArgs.num_lookahead_slots, help="Category: Speculative Decoding Options\n" "Experimental scheduling config necessary for " "speculative decoding. This will be replaced by " "speculative decoding config in the future; it is " "present for testing purposes until then.") parser.add_argument( "--speculative-model", type=str, default=EngineArgs.speculative_model, help="Category: Speculative Decoding Options\n" "The name of the draft model to be used in speculative decoding.") # Quantization settings for speculative model. parser.add_argument( '--speculative-model-quantization', type=str, choices=[*QUANTIZATION_METHODS, None], default=EngineArgs.speculative_model_quantization, help='Method used to quantize the weights of speculative model.' 'If None, we first check the `quantization_config` ' 'attribute in the model config file. If that is ' 'None, we assume the model weights are not ' 'quantized and use `dtype` to determine the data ' 'type of the weights.') parser.add_argument("--num-speculative-tokens", type=int, default=EngineArgs.num_speculative_tokens, help="Category: Speculative Decoding Options\n" "The number of speculative tokens to sample from " "the draft model in speculative decoding") parser.add_argument( "--speculative-max-model-len", type=str, default=EngineArgs.speculative_max_model_len, help="Category: Speculative Decoding Options\n" "The maximum sequence length supported by the " "draft model. Sequences over this length will skip " "speculation.") parser.add_argument( "--ngram-prompt-lookup-max", type=int, default=EngineArgs.ngram_prompt_lookup_max, help="Category: Speculative Decoding Options\n" "Max size of window for ngram prompt lookup in speculative " "decoding.") parser.add_argument( "--ngram-prompt-lookup-min", type=int, default=EngineArgs.ngram_prompt_lookup_min, help="Category: Speculative Decoding Options\n" "Min size of window for ngram prompt lookup in speculative " "decoding.") parser.add_argument( "--speculative-draft-tensor-parallel-size", "-spec-draft-tp", type=int, default=EngineArgs.speculative_draft_tensor_parallel_size, help="Category: Speculative Decoding Options\n" "Number of tensor parallel replicas for " "the draft model in speculative decoding.") parser.add_argument( "--speculative-disable-by-batch-size", type=int, default=EngineArgs.speculative_disable_by_batch_size, help="Category: Speculative Decoding Options\n" "Disable speculative decoding for new incoming requests " "if the number of enqueue requests is larger than this value.") parser.add_argument( '--spec-decoding-acceptance-method', type=str, default=EngineArgs.spec_decoding_acceptance_method, choices=['rejection_sampler', 'typical_acceptance_sampler'], help='Category: Speculative Decoding Options\n' 'Specify the acceptance method to use during draft token ' 'verification in speculative decoding. Two types of acceptance ' 'routines are supported: ' '1) RejectionSampler which does not allow changing the ' 'acceptance rate of draft tokens, ' '2) TypicalAcceptanceSampler which is configurable, allowing for ' 'a higher acceptance rate at the cost of lower quality, ' 'and vice versa.') parser.add_argument( '--typical-acceptance-sampler-posterior-threshold', type=float, default=EngineArgs.typical_acceptance_sampler_posterior_threshold, help='Category: Speculative Decoding Options\n' 'Set the lower bound threshold for the posterior ' 'probability of a token to be accepted. This threshold is ' 'used by the TypicalAcceptanceSampler to make sampling decisions ' 'during speculative decoding. Defaults to 0.09') parser.add_argument( '--typical-acceptance-sampler-posterior-alpha', type=float, default=EngineArgs.typical_acceptance_sampler_posterior_alpha, help='Category: Speculative Decoding Options\n' 'A scaling factor for the entropy-based threshold for token ' 'acceptance in the TypicalAcceptanceSampler. Typically defaults ' 'to sqrt of --typical-acceptance-sampler-posterior-threshold ' 'i.e. 0.3') parser.add_argument( '--disable-logprobs-during-spec-decoding', type=bool, default=EngineArgs.disable_logprobs_during_spec_decoding, help='Category: Speculative Decoding Options\n' 'If set to True, token log probabilities are not returned ' 'during speculative decoding. If set to False, log probabilities ' 'are returned according to the settings in SamplingParams. If ' 'not specified, it defaults to True. Disabling log probabilities ' 'during speculative decoding reduces latency by skipping logprob ' 'calculation in proposal sampling, target sampling, and after ' 'accepted tokens are determined.') # Adapter Options parser.add_argument( "--enable-lora", action="store_true", help="Category: Adapter Options\n" "If True, enable handling of LoRA adapters.", ) parser.add_argument( "--max-loras", type=int, default=EngineArgs.max_loras, help="Category: Adapter Options\n" "Max number of LoRAs in a single batch.", ) parser.add_argument( "--max-lora-rank", type=int, default=EngineArgs.max_lora_rank, help="Category: Adapter Options\n" "Max LoRA rank.", ) parser.add_argument( "--lora-extra-vocab-size", type=int, default=EngineArgs.lora_extra_vocab_size, help=("Category: Adapter Options\n" "Maximum size of extra vocabulary that can be " "present in a LoRA adapter (added to the base " "model vocabulary)."), ) parser.add_argument( "--lora-dtype", type=str, default=EngineArgs.lora_dtype, choices=["auto", "float16", "bfloat16", "float32"], help=("Category: Adapter Options\n" "Data type for LoRA. If auto, will default to " "base model dtype."), ) parser.add_argument( "--max-cpu-loras", type=int, default=EngineArgs.max_cpu_loras, help=("Category: Adapter Options\n" "Maximum number of LoRAs to store in CPU memory. " "Must be >= than max_num_seqs. " "Defaults to max_num_seqs."), ) parser.add_argument( "--long-lora-scaling-factors", type=str, default=EngineArgs.long_lora_scaling_factors, help=("Category: Adapter Options\n" "Specify multiple scaling factors (which can " "be different from base model scaling factor " "- see eg. Long LoRA) to allow for multiple " "LoRA adapters trained with those scaling " "factors to be used at the same time. If not " "specified, only adapters trained with the " "base model scaling factor are allowed.")) parser.add_argument( "--fully-sharded-loras", action='store_true', help=("Category: Adapter Options\n" "By default, only half of the LoRA computation is sharded " "with tensor parallelism. Enabling this will use the fully " "sharded layers. At high sequence length, max rank or " "tensor parallel size, this is likely faster.")) parser.add_argument("--qlora-adapter-name-or-path", type=str, default=None, help="Category: Adapter Options\n" "Name or path of the LoRA adapter to use.") parser.add_argument('--enable-prompt-adapter', action='store_true', help='Category: Adapter Options\n' 'If True, enable handling of PromptAdapters.') parser.add_argument('--max-prompt-adapters', type=int, default=EngineArgs.max_prompt_adapters, help='Category: Adapter Options\n' 'Max number of PromptAdapters in a batch.') parser.add_argument('--max-prompt-adapter-token', type=int, default=EngineArgs.max_prompt_adapter_token, help='Category: Adapter Options\n' 'Max number of PromptAdapters tokens') # Log Options parser.add_argument( "--disable-log-stats", action="store_true", help="Category: Log Options\n" "disable logging statistics", ) return parser @classmethod def from_cli_args(cls, args: argparse.Namespace) -> "EngineArgs": # Get the list of attributes of this dataclass. attrs = [attr.name for attr in dataclasses.fields(cls)] # Set the attributes from the parsed arguments. engine_args = cls(**{attr: getattr(args, attr) for attr in attrs}) return engine_args def create_engine_config(self, ) -> EngineConfig: # gguf file needs a specific model loader and doesn't use hf_repo if check_gguf_file(self.model): self.quantization = self.load_format = "gguf" # bitsandbytes quantization needs a specific model loader # so we make sure the quant method and the load format are consistent if (self.quantization == "bitsandbytes" or self.qlora_adapter_name_or_path is not None) and \ self.load_format != "bitsandbytes": raise ValueError( "BitsAndBytes quantization and QLoRA adapter only support " f"'bitsandbytes' load format, but got {self.load_format}") if (self.load_format == "bitsandbytes" or self.qlora_adapter_name_or_path is not None) and \ self.quantization != "bitsandbytes": raise ValueError( "BitsAndBytes load format and QLoRA adapter only support " f"'bitsandbytes' quantization, but got {self.quantization}") assert self.cpu_offload_gb >= 0, ( "CPU offload space must be non-negative" f", but got {self.cpu_offload_gb}") multimodal_config = MultiModalConfig( limit_per_prompt=self.limit_mm_per_prompt or {}) device_config = DeviceConfig(device=self.device) model_config = ModelConfig( model=self.model, tokenizer=self.tokenizer, tokenizer_mode=self.tokenizer_mode, trust_remote_code=self.trust_remote_code, dtype=self.dtype, seed=self.seed, revision=self.revision, code_revision=self.code_revision, rope_scaling=self.rope_scaling, rope_theta=self.rope_theta, tokenizer_revision=self.tokenizer_revision, max_model_len=self.max_model_len, quantization=self.quantization, deepspeed_fp_bits=self.deepspeed_fp_bits, quantization_param_path=self.quantization_param_path, enforce_eager=self.enforce_eager, max_context_len_to_capture=self.max_context_len_to_capture, max_seq_len_to_capture=self.max_seq_len_to_capture, max_logprobs=self.max_logprobs, disable_sliding_window=self.disable_sliding_window, skip_tokenizer_init=self.skip_tokenizer_init, served_model_name=self.served_model_name, multimodal_config=multimodal_config, ) cache_config = CacheConfig( block_size=self.block_size, gpu_memory_utilization=self.gpu_memory_utilization, swap_space=self.swap_space, cache_dtype=self.kv_cache_dtype, is_attention_free=model_config.is_attention_free(), num_gpu_blocks_override=self.num_gpu_blocks_override, sliding_window=model_config.get_sliding_window(), enable_prefix_caching=self.enable_prefix_caching, cpu_offload_gb=self.cpu_offload_gb, ) parallel_config = ParallelConfig( pipeline_parallel_size=self.pipeline_parallel_size, tensor_parallel_size=self.tensor_parallel_size, worker_use_ray=self.worker_use_ray, max_parallel_loading_workers=self.max_parallel_loading_workers, disable_custom_all_reduce=self.disable_custom_all_reduce, tokenizer_pool_config=TokenizerPoolConfig.create_config( tokenizer_pool_size=self.tokenizer_pool_size, tokenizer_pool_type=self.tokenizer_pool_type, tokenizer_pool_extra_config=self.tokenizer_pool_extra_config, ), ray_workers_use_nsight=self.ray_workers_use_nsight, distributed_executor_backend=self.distributed_executor_backend) max_model_len = model_config.max_model_len use_long_context = max_model_len > 32768 if self.enable_chunked_prefill is None: # If not explicitly set, enable chunked prefill by default for # long context (> 32K) models. This is to avoid OOM errors in the # initial memory profiling phase. if use_long_context: is_gpu = device_config.device_type == "cuda" use_sliding_window = (model_config.get_sliding_window() is not None) use_spec_decode = self.speculative_model is not None has_seqlen_agnostic_layers = ( model_config.contains_seqlen_agnostic_layers( parallel_config)) if (is_gpu and not use_sliding_window and not use_spec_decode and not self.enable_lora and not self.enable_prompt_adapter and not self.enable_prefix_caching and not has_seqlen_agnostic_layers): self.enable_chunked_prefill = True logger.warning( "Chunked prefill is enabled by default for models with " "max_model_len > 32K. Currently, chunked prefill might " "not work with some features or models. If you " "encounter any issues, please disable chunked prefill " "by setting --enable-chunked-prefill=False.") if self.enable_chunked_prefill is None: self.enable_chunked_prefill = False if not self.enable_chunked_prefill and use_long_context: logger.warning( f"The model has a long context length ({max_model_len}). " "This may cause OOM errors during the initial memory " "profiling phase, or result in low performance due to small " "KV cache space. Consider setting --max-model-len to a " "smaller value.") speculative_config = SpeculativeConfig.maybe_create_spec_config( target_model_config=model_config, target_parallel_config=parallel_config, target_dtype=self.dtype, speculative_model=self.speculative_model, speculative_model_quantization = \ self.speculative_model_quantization, speculative_draft_tensor_parallel_size=self. speculative_draft_tensor_parallel_size, num_speculative_tokens=self.num_speculative_tokens, speculative_disable_by_batch_size=self. speculative_disable_by_batch_size, speculative_max_model_len=self.speculative_max_model_len, enable_chunked_prefill=self.enable_chunked_prefill, use_v2_block_manager=self.use_v2_block_manager, disable_log_stats=self.disable_log_stats, ngram_prompt_lookup_max=self.ngram_prompt_lookup_max, ngram_prompt_lookup_min=self.ngram_prompt_lookup_min, draft_token_acceptance_method=\ self.spec_decoding_acceptance_method, typical_acceptance_sampler_posterior_threshold=self. typical_acceptance_sampler_posterior_threshold, typical_acceptance_sampler_posterior_alpha=self. typical_acceptance_sampler_posterior_alpha, disable_logprobs=self.disable_logprobs_during_spec_decoding, ) if self.num_scheduler_steps > 1: raise NotImplementedError("Multi-step is not yet supported.") if speculative_config is not None: raise ValueError("Speculative decoding is not supported with " "multi-step (--num-scheduler-steps > 1)") if self.enable_chunked_prefill: raise ValueError("Chunked prefill is not supported with " "multi-step (--num-scheduler-steps > 1)") # make sure num_lookahead_slots is set the higher value depending on # if we are using speculative decoding or multi-step num_lookahead_slots = max(self.num_lookahead_slots, self.num_scheduler_steps - 1) num_lookahead_slots = num_lookahead_slots \ if speculative_config is None \ else speculative_config.num_lookahead_slots scheduler_config = SchedulerConfig( max_num_batched_tokens=self.max_num_batched_tokens, max_num_seqs=self.max_num_seqs, max_model_len=model_config.max_model_len, is_attention_free=model_config.is_attention_free(), use_v2_block_manager=self.use_v2_block_manager, num_lookahead_slots=num_lookahead_slots, delay_factor=self.scheduler_delay_factor, enable_chunked_prefill=self.enable_chunked_prefill, embedding_mode=model_config.embedding_mode, preemption_mode=self.preemption_mode, num_scheduler_steps=self.num_scheduler_steps, ) lora_config = LoRAConfig( max_lora_rank=self.max_lora_rank, max_loras=self.max_loras, fully_sharded_loras=self.fully_sharded_loras, lora_extra_vocab_size=self.lora_extra_vocab_size, long_lora_scaling_factors=self.long_lora_scaling_factors, lora_dtype=self.lora_dtype, max_cpu_loras=self.max_cpu_loras if self.max_cpu_loras and self.max_cpu_loras > 0 else None) if self.enable_lora else None if self.qlora_adapter_name_or_path is not None and \ self.qlora_adapter_name_or_path != "": if self.model_loader_extra_config is None: self.model_loader_extra_config = {} self.model_loader_extra_config[ "qlora_adapter_name_or_path"] = self.qlora_adapter_name_or_path load_config = LoadConfig( load_format=self.load_format, download_dir=self.download_dir, model_loader_extra_config=self.model_loader_extra_config, ignore_patterns=self.ignore_patterns) prompt_adapter_config = PromptAdapterConfig( max_prompt_adapters=self.max_prompt_adapters, max_prompt_adapter_token=self.max_prompt_adapter_token) \ if self.enable_prompt_adapter else None decoding_config = DecodingConfig( guided_decoding_backend=self.guided_decoding_backend) if (model_config.get_sliding_window() is not None and scheduler_config.chunked_prefill_enabled and not scheduler_config.use_v2_block_manager): raise ValueError( "Chunked prefill is not supported with sliding window. " "Set --disable-sliding-window to disable sliding window.") return EngineConfig(model_config=model_config, cache_config=cache_config, parallel_config=parallel_config, scheduler_config=scheduler_config, device_config=device_config, lora_config=lora_config, multimodal_config=multimodal_config, speculative_config=speculative_config, load_config=load_config, decoding_config=decoding_config, prompt_adapter_config=prompt_adapter_config) @dataclass class AsyncEngineArgs(EngineArgs): """Arguments for asynchronous Aphrodite engine.""" engine_use_ray: bool = False disable_log_requests: bool = False uvloop: bool = False @staticmethod def add_cli_args(parser: FlexibleArgumentParser, async_args_only: bool = False) -> FlexibleArgumentParser: if not async_args_only: parser = EngineArgs.add_cli_args(parser) parser.add_argument('--engine-use-ray', action='store_true', help='Use Ray to start the LLM engine in a ' 'separate process as the server process.') parser.add_argument('--disable-log-requests', action='store_true', help='Disable logging requests.') parser.add_argument( "--uvloop", action="store_true", help="Use the Uvloop asyncio event loop to possibly increase " "performance") return parser class StoreBoolean(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): if values.lower() == "true": setattr(namespace, self.dest, True) elif values.lower() == "false": setattr(namespace, self.dest, False) else: raise ValueError(f"Invalid boolean value: {values}. " "Expected 'true' or 'false'.")