# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Qwen2VL model configuration""" import os from typing import Union from transformers import PretrainedConfig class Qwen2VLVisionConfig(PretrainedConfig): model_type = "qwen2_vl" def __init__( self, depth=32, embed_dim=1280, hidden_size=3584, hidden_act="quick_gelu", mlp_ratio=4, num_heads=16, in_channels=3, patch_size=14, spatial_merge_size=2, temporal_patch_size=2, **kwargs, ): super().__init__(**kwargs) self.depth = depth self.embed_dim = embed_dim self.hidden_size = hidden_size self.hidden_act = hidden_act self.mlp_ratio = mlp_ratio self.num_heads = num_heads self.in_channels = in_channels self.patch_size = patch_size self.spatial_merge_size = spatial_merge_size self.temporal_patch_size = temporal_patch_size @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict( pretrained_model_name_or_path, **kwargs ) if config_dict.get("model_type") == "qwen2_vl": config_dict = config_dict["vision_config"] return cls.from_dict(config_dict, **kwargs) class Qwen2VLConfig(PretrainedConfig): def __init__( self, vocab_size=152064, hidden_size=8192, intermediate_size=29568, num_hidden_layers=80, num_attention_heads=64, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-05, use_cache=True, tie_word_embeddings=False, rope_theta=1000000.0, use_sliding_window=False, sliding_window=4096, max_window_layers=80, attention_dropout=0.0, vision_config=None, rope_scaling=None, **kwargs, ): if isinstance(vision_config, dict): self.vision_config = Qwen2VLVisionConfig(**vision_config) elif vision_config is None: self.vision_config = Qwen2VLVisionConfig() self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window self.max_window_layers = max_window_layers # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_dropout = attention_dropout self.rope_scaling = rope_scaling # NOTE: the following section from original transformers config # for Qwen2-VL is commented out to address rope config loading issue # # if self.rope_scaling is not None and "type" in self.rope_scaling: # if self.rope_scaling["type"] == "mrope": # self.rope_scaling["type"] = "default" # self.rope_scaling["rope_type"] = self.rope_scaling["type"] # rope_config_validation(self) super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)