from contextlib import contextmanager from itertools import chain from typing import List, Tuple import torch from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata SeqId = int def get_all_seq_ids( seq_group_metadata_list: List[SequenceGroupMetadata]) -> List[SeqId]: """Given a list of SequenceGroupMetadata, create a list of all sequence ids. """ return list( chain.from_iterable([ seq_group_metadata.seq_data.keys() for seq_group_metadata in seq_group_metadata_list ])) def split_batch_by_proposal_len( seq_group_metadata_list: List[SequenceGroupMetadata], proposal_lens: List[int], select_proposal_len_zero: bool ) -> Tuple[List[SequenceGroupMetadata], List[int]]: """Utility function that splits a batch based on whether the proposal len is zero or not. We should remove this once Aphrodite supports per-sequence proposal lens in a batch. """ if select_proposal_len_zero: predicate = lambda proposal_len: proposal_len == 0 else: predicate = lambda proposal_len: proposal_len != 0 indices = [ i for i, (_, proposal_len ) in enumerate(zip(seq_group_metadata_list, proposal_lens)) if predicate(proposal_len) ] seq_groups = [ seq_group for seq_group, proposal_len in zip( seq_group_metadata_list, proposal_lens) if predicate(proposal_len) ] return seq_groups, indices def sampler_output_to_torch( sampler_output_list: List[SamplerOutput], sampler_transposed: bool) -> Tuple[torch.Tensor, torch.Tensor]: """Utility function which converts a list of SamplerOutput to tensors. Returns: sampled_token_ids: torch.Tensor shape: [batch_size, len(sampler_output_list)] sampled_token_probs: torch.Tensor shape: [batch_size, len(sampler_output_list), vocab_size] """ # shape: [batch_size, num_sampler_output, vocab_size] sampled_token_probs = torch.stack( [ sampler_output.sampled_token_probs for sampler_output in sampler_output_list ], dim=0, ) if sampler_transposed: sampled_token_probs = sampled_token_probs.transpose(0, 1) # shape: [batch_size, num_sampler_output] sampled_token_ids = torch.stack( [ sampler_output.sampled_token_ids.flatten() for sampler_output in sampler_output_list ], dim=0, ) if sampler_transposed: sampled_token_ids = sampled_token_ids.transpose(0, 1) return sampled_token_ids, sampled_token_probs def maybe_mock_device_tensors(sampler_output: SamplerOutput, batch_size: int, vocab_size: int, device: str) -> None: """Helper method which mocks out the GPU tensors in SamplerOutput with dummy values. """ values = [ sampler_output.sampled_token_probs, sampler_output.sampled_token_ids ] assert all(v is None for v in values) or not any(v is None for v in values) if not any(v is None for v in values): # Do nothing if the tensors are already created (usually in unit tests). return # Softmax to ensure valid probs. sampler_output.sampled_token_probs = torch.nn.functional.softmax( torch.rand(batch_size, vocab_size, dtype=torch.float32, device=device), dim=-1) sampler_output.sampled_token_ids = torch.randint(low=10, high=100, size=(batch_size, ), dtype=torch.long, device=device) @contextmanager def nvtx_range(msg, *args, **kwargs): """ Context manager / decorator that pushes an NVTX range at the beginning of its scope, and pops it at the end. If extra arguments are given, they are passed as arguments to msg.format(). If running with cuda graphs, you must enable nsys cuda graph profiling. Arguments: msg (string): message to associate with the range """ torch.cuda.nvtx.range_push(msg.format(*args, **kwargs)) try: yield finally: torch.cuda.nvtx.range_pop()