import weakref from typing import List import pytest from aphrodite import LLM, RequestOutput, SamplingParams from ...conftest import cleanup MODEL_NAME = "facebook/opt-125m" PROMPTS = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] TOKEN_IDS = [ [0], [0, 1], [0, 2, 1], [0, 3, 1, 2], ] @pytest.fixture(scope="module") def llm(): # pytest caches the fixture so we use weakref.proxy to # enable garbage collection llm = LLM(model=MODEL_NAME, max_num_batched_tokens=4096, tensor_parallel_size=1, gpu_memory_utilization=0.10, enforce_eager=True) with llm.deprecate_legacy_api(): yield weakref.proxy(llm) del llm cleanup() def assert_outputs_equal(o1: List[RequestOutput], o2: List[RequestOutput]): assert [o.outputs for o in o1] == [o.outputs for o in o2] @pytest.mark.skip_global_cleanup @pytest.mark.parametrize('prompt', PROMPTS) def test_v1_v2_api_consistency_single_prompt_string(llm: LLM, prompt): sampling_params = SamplingParams(temperature=0.0, top_p=1.0) with pytest.warns(DeprecationWarning, match="'prompts'"): v1_output = llm.generate(prompts=prompt, sampling_params=sampling_params) v2_output = llm.generate(prompt, sampling_params=sampling_params) assert_outputs_equal(v1_output, v2_output) v2_output = llm.generate({"prompt": prompt}, sampling_params=sampling_params) assert_outputs_equal(v1_output, v2_output) @pytest.mark.skip_global_cleanup @pytest.mark.parametrize('prompt_token_ids', TOKEN_IDS) def test_v1_v2_api_consistency_single_prompt_tokens(llm: LLM, prompt_token_ids): sampling_params = SamplingParams(temperature=0.0, top_p=1.0) with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"): v1_output = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) v2_output = llm.generate({"prompt_token_ids": prompt_token_ids}, sampling_params=sampling_params) assert_outputs_equal(v1_output, v2_output) @pytest.mark.skip_global_cleanup def test_v1_v2_api_consistency_multi_prompt_string(llm: LLM): sampling_params = SamplingParams(temperature=0.0, top_p=1.0) with pytest.warns(DeprecationWarning, match="'prompts'"): v1_output = llm.generate(prompts=PROMPTS, sampling_params=sampling_params) v2_output = llm.generate(PROMPTS, sampling_params=sampling_params) assert_outputs_equal(v1_output, v2_output) v2_output = llm.generate( [{ "prompt": p } for p in PROMPTS], sampling_params=sampling_params, ) assert_outputs_equal(v1_output, v2_output) @pytest.mark.skip_global_cleanup def test_v1_v2_api_consistency_multi_prompt_tokens(llm: LLM): sampling_params = SamplingParams(temperature=0.0, top_p=1.0) with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"): v1_output = llm.generate(prompt_token_ids=TOKEN_IDS, sampling_params=sampling_params) v2_output = llm.generate( [{ "prompt_token_ids": p } for p in TOKEN_IDS], sampling_params=sampling_params, ) assert_outputs_equal(v1_output, v2_output) @pytest.mark.skip_global_cleanup def test_multiple_sampling_params(llm: LLM): sampling_params = [ SamplingParams(temperature=0.01, top_p=0.95), SamplingParams(temperature=0.3, top_p=0.95), SamplingParams(temperature=0.7, top_p=0.95), SamplingParams(temperature=0.99, top_p=0.95), ] # Multiple SamplingParams should be matched with each prompt outputs = llm.generate(PROMPTS, sampling_params=sampling_params) assert len(PROMPTS) == len(outputs) # Exception raised, if the size of params does not match the size of prompts with pytest.raises(ValueError): outputs = llm.generate(PROMPTS, sampling_params=sampling_params[:3]) # Single SamplingParams should be applied to every prompt single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95) outputs = llm.generate(PROMPTS, sampling_params=single_sampling_params) assert len(PROMPTS) == len(outputs) # sampling_params is None, default params should be applied outputs = llm.generate(PROMPTS, sampling_params=None) assert len(PROMPTS) == len(outputs) def test_chat(): llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct") prompt1 = "Explain the concept of entropy." messages = [ { "role": "system", "content": "You are a helpful assistant" }, { "role": "user", "content": prompt1 }, ] outputs = llm.chat(messages) assert len(outputs) == 1