# Derived from BART implementation posted on HuggingFace; license below: # # coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BART model.""" import math from typing import Iterable, List, Optional, Tuple import torch from torch import nn from transformers import BartConfig from aphrodite.attention import Attention, AttentionMetadata, AttentionType from aphrodite.common.config import CacheConfig, LoRAConfig from aphrodite.common.sequence import IntermediateTensors from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.linear import (ColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.sampler import Sampler, SamplerOutput from aphrodite.modeling.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig def get_bsz_seq_len(input_ids): shp = input_ids.shape ndim = len(shp) if ndim == 1: return 1, input_ids.numel() else: return shp[:2] class BartLearnedPositionalEmbedding(VocabParallelEmbedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): # Bart is set up so that if padding_idx is # specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. # Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim) def forward( self, positions: torch.Tensor, attn_type: AttentionType, ) -> torch.Tensor: """`input_ids' shape is expected to be [bsz x seqlen].""" assert attn_type != AttentionType.ENCODER_DECODER return super().forward(positions + self.offset) class BartScaledWordEmbedding(VocabParallelEmbedding): """ This module overrides VocabParallelEmbedding's forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, embed_scale: float = 1.0): super().__init__(num_embeddings, embedding_dim) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor) -> torch.Tensor: return super().forward(input_ids) * self.embed_scale class BartParallelLMHead(ParallelLMHead): """ This module overrides ParallelLMHead's forward by dividing by embeddings scale, yielding effectively the inverse of BartScaledWordEmbedding """ def __init__(self, num_embeddings: int, embedding_dim: int, embed_scale: float = 1.0): super().__init__(num_embeddings, embedding_dim) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor) -> torch.Tensor: return super().forward(input_ids) / self.embed_scale class BartEncoderAttention(nn.Module): def __init__( self, embed_dim: int, num_heads: int, bias: bool = True, config: Optional[BartConfig] = None, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.d_model = config.d_model self.embed_dim = embed_dim self.total_num_heads = num_heads self.total_num_kv_heads = self.total_num_heads self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError(f"embed_dim must be divisible by num_heads " f"(got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads}).") self.scaling = self.head_dim**-0.5 self.qkv_proj = QKVParallelLinear( self.d_model, self.d_model // self.total_num_heads, self.total_num_heads, self.total_num_kv_heads, bias=bias, quant_config=quant_config, ) self.out_proj = RowParallelLinear( embed_dim, embed_dim, bias=bias, quant_config=quant_config, ) tp_world_size = get_tensor_model_parallel_world_size() assert self.total_num_heads % tp_world_size == 0 self.num_heads = self.total_num_heads // tp_world_size if self.total_num_kv_heads >= tp_world_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_world_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_world_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config) def forward(self, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata) -> torch.Tensor: """Input shape: Batch x Time x Channel""" qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) attn_output = self.attn(q, k, v, kv_cache, attn_metadata, attn_type=AttentionType.ENCODER) output, _ = self.out_proj(attn_output) return output class BartDecoderSelfAttention(nn.Module): def __init__( self, embed_dim: int, num_heads: int, bias: bool = True, config: Optional[BartConfig] = None, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.d_model = config.d_model self.embed_dim = embed_dim self.total_num_heads = num_heads self.total_num_kv_heads = self.total_num_heads self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError(f"embed_dim must be divisible by num_heads " f"(got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads}).") self.scaling = self.head_dim**-0.5 self.qkv_proj = QKVParallelLinear( self.d_model, self.d_model // self.total_num_heads, self.total_num_heads, self.total_num_kv_heads, bias=bias, quant_config=quant_config, ) self.out_proj = RowParallelLinear( embed_dim, embed_dim, bias=bias, quant_config=quant_config, ) tp_world_size = get_tensor_model_parallel_world_size() assert self.total_num_heads % tp_world_size == 0 self.num_heads = self.total_num_heads // tp_world_size if self.total_num_kv_heads >= tp_world_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_world_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_world_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config) def forward(self, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata) -> torch.Tensor: """Input shape: Batch x Time x Channel""" qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) attn_output = self.attn(q, k, v, kv_cache, attn_metadata, attn_type=AttentionType.DECODER) output, _ = self.out_proj(attn_output) return output class BartCrossAttention(nn.Module): def __init__( self, embed_dim: int, num_heads: int, bias: bool = True, config: Optional[BartConfig] = None, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.d_model = config.d_model self.embed_dim = embed_dim self.total_num_heads = num_heads self.total_num_kv_heads = self.total_num_heads self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError(f"embed_dim must be divisible by num_heads " f"(got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads}).") self.scaling = self.head_dim**-0.5 self.qkv_proj = QKVParallelLinear( self.d_model, self.d_model // self.total_num_heads, self.total_num_heads, self.total_num_kv_heads, bias=bias, quant_config=quant_config, ) self.out_proj = RowParallelLinear( embed_dim, embed_dim, bias=bias, quant_config=quant_config, ) tp_world_size = get_tensor_model_parallel_world_size() assert self.total_num_heads % tp_world_size == 0 self.num_heads = self.total_num_heads // tp_world_size if self.total_num_kv_heads >= tp_world_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_world_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_world_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config) def forward( self, decoder_hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, encoder_hidden_states: Optional[torch.Tensor] = None, ) -> torch.Tensor: """Input shape: Batch x Time x Channel""" # (afeldman-nm 2024/07/22) TODO: # Need a more efficient solution for q/k/v qkv_dec, _ = self.qkv_proj(decoder_hidden_states) q, _, _ = qkv_dec.split([self.q_size, self.kv_size, self.kv_size], dim=-1) if encoder_hidden_states is None: k = None v = None else: qkv_enc, _ = self.qkv_proj(encoder_hidden_states) _, k, v = qkv_enc.split([self.q_size, self.kv_size, self.kv_size], dim=-1) attn_output = self.attn(q, k, v, kv_cache, attn_metadata, attn_type=AttentionType.ENCODER_DECODER) output, _ = self.out_proj(attn_output) return output class BartEncoderLayer(nn.Module): def __init__( self, config: BartConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.embed_dim = config.d_model self.self_attn = BartEncoderAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, config=config, cache_config=cache_config, quant_config=quant_config) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.activation_fn = get_act_fn(config.activation_function, quant_config) ffn_hidden_size = self.embed_dim ffn_intermediate_size = config.encoder_ffn_dim ffn_has_bias = True self.fc1 = ColumnParallelLinear( ffn_hidden_size, ffn_intermediate_size, bias=ffn_has_bias, quant_config=quant_config, ) self.act = get_act_fn("gelu", quant_config, ffn_intermediate_size) self.fc2 = RowParallelLinear( ffn_intermediate_size, ffn_hidden_size, bias=ffn_has_bias, quant_config=quant_config, ) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward(self, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata) -> torch.Tensor: r""" Args: hidden_states torch.Tensor of *encoder* input embeddings. kv_cache: Layer-wise list of KV cache tensors attn_metadata: Aphrodite Attention metadata structure Returns: Encoder layer output torch.Tensor """ residual = hidden_states hidden_states = self.self_attn(hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states fc1_out, _ = self.fc1(hidden_states) hidden_states = self.activation_fn(fc1_out) hidden_states, _ = self.fc2(hidden_states) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) return hidden_states class BartDecoderLayer(nn.Module): def __init__( self, config: BartConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.embed_dim = config.d_model self.self_attn = BartDecoderSelfAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, config=config, cache_config=cache_config, quant_config=quant_config) self.activation_fn = get_act_fn(config.activation_function, quant_config) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) ''' afeldman-nm: personally I would call this "cross-attention", however I left the name as "encoder_attn" to maintain consistency with the name of the pretrained weights. ''' self.encoder_attn = BartCrossAttention( self.embed_dim, config.decoder_attention_heads, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) ffn_hidden_size = self.embed_dim ffn_intermediate_size = config.encoder_ffn_dim ffn_has_bias = True self.fc1 = ColumnParallelLinear( ffn_hidden_size, ffn_intermediate_size, bias=ffn_has_bias, quant_config=quant_config, ) self.fc2 = RowParallelLinear( ffn_intermediate_size, ffn_hidden_size, bias=ffn_has_bias, quant_config=quant_config, ) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, decoder_hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, encoder_hidden_states: Optional[torch.Tensor] = None, ) -> torch.Tensor: r""" Args: decoder_hidden_states torch.Tensor of *decoder* input embeddings. kv_cache: KV cache tensor attn_metadata: Aphrodite Attention metadata structure encoder_hidden_states torch.Tensor of *encoder* input embeddings. Returns: Decoder layer output torch.Tensor """ residual = decoder_hidden_states # Self Attention hidden_states = self.self_attn(hidden_states=decoder_hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block residual = hidden_states hidden_states = self.encoder_attn( decoder_hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, encoder_hidden_states=encoder_hidden_states, ) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states fc1_out, _ = self.fc1(hidden_states) hidden_states = self.activation_fn(fc1_out) hidden_states, _ = self.fc2(hidden_states) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states class BartEncoder(nn.Module): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`BartEncoderLayer`]. Args: config: BartConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BartConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, embed_tokens: Optional[nn.Embedding] = None): super().__init__() self.cache_config = cache_config self.quant_config = quant_config self.lora_config = lora_config embed_dim = config.d_model self.max_source_positions = config.max_position_embeddings embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.embed_tokens = BartScaledWordEmbedding(config.vocab_size, embed_dim, embed_scale=embed_scale) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = BartLearnedPositionalEmbedding( config.max_position_embeddings, embed_dim, ) self.layers = nn.ModuleList( [BartEncoderLayer(config,cache_config,quant_config) \ for _ in range(config.encoder_layers)]) self.layernorm_embedding = nn.LayerNorm(embed_dim) def forward(self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata) -> torch.Tensor: r""" Args: input_ids Indices of *encoder* input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. positions Positions of *encoder* input sequence tokens. kv_caches: Layer-wise list of KV cache tensors attn_metadata: Aphrodite Attention metadata structure Returns: Decoder output torch.Tensor """ # retrieve input_ids and inputs_embeds input_ids = input_ids.view(-1, input_ids.shape[-1]) inputs_embeds = self.embed_tokens(input_ids) embed_pos = self.embed_positions( positions, AttentionType.ENCODER, ) embed_pos = embed_pos.to(inputs_embeds.device) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) for idx, encoder_layer in enumerate(self.layers): hidden_states = encoder_layer( hidden_states=hidden_states, kv_cache=kv_caches[idx], attn_metadata=attn_metadata, ) return hidden_states class BartDecoder(nn.Module): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BartDecoderLayer`] Args: config: BartConfig embed_tokens (nn.Embedding): output embedding """ def __init__( self, config: BartConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, embed_tokens: Optional[nn.Embedding] = None, ): super().__init__() self.cache_config = cache_config self.quant_config = quant_config self.lora_config = lora_config self.max_target_positions = config.max_position_embeddings embed_scale = math.sqrt( config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = BartScaledWordEmbedding(config.vocab_size, config.d_model, embed_scale=embed_scale) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = BartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, ) self.layers = nn.ModuleList( [BartDecoderLayer(config,cache_config,quant_config) \ for _ in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) def forward(self, decoder_input_ids: torch.Tensor, decoder_positions: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor], kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata) -> torch.Tensor: r""" Args: decoder_input_ids Indices of *decoder* input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. decoder_positions Positions of *decoder* input sequence tokens. encoder_hidden_states: Tensor of encoder output embeddings kv_caches: Layer-wise list of KV cache tensors attn_metadata: Aphrodite Attention metadata structure Returns: Decoder output torch.Tensor """ inputs_embeds = self.embed_tokens(decoder_input_ids) # embed positions embed_pos = self.embed_positions( decoder_positions, AttentionType.DECODER, ) embed_pos = embed_pos.to(inputs_embeds.device) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) # decoder layers for idx, decoder_layer in enumerate(self.layers): hidden_states = decoder_layer( decoder_hidden_states=hidden_states, kv_cache=kv_caches[idx], attn_metadata=attn_metadata, encoder_hidden_states=encoder_hidden_states, ) return hidden_states class BartModel(nn.Module): _tied_weights_keys = [ "encoder.embed_tokens.weight", "decoder.embed_tokens.weight" ] def __init__(self, config: BartConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None): super().__init__() self.config = config self.padding_idx = config.pad_token_id lora_vocab = (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) if lora_config else 0 self.vocab_size = config.vocab_size + lora_vocab self.org_vocab_size = config.vocab_size self.encoder = BartEncoder(config, cache_config, quant_config=quant_config) self.decoder = BartDecoder(config, cache_config, quant_config=quant_config) def forward(self, input_ids: torch.Tensor, positions: torch.Tensor, encoder_input_ids: torch.Tensor, encoder_positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata) -> torch.Tensor: r""" Args: input_ids Indices of *decoder* input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. positions Positions of *decoder* input sequence tokens. encoder_input_ids Indices of *encoder* input sequence tokens in the vocabulary. encoder_positions: Positions of *encoder* input sequence tokens. kv_caches: Layer-wise list of KV cache tensors attn_metadata: Aphrodite Attention metadata structure Returns: Model output torch.Tensor """ encoder_hidden_states = None if encoder_input_ids.numel() > 0: # Run encoder attention if a non-zero number of encoder tokens # are provided as input encoder_hidden_states = self.encoder(input_ids=encoder_input_ids, positions=encoder_positions, kv_caches=kv_caches, attn_metadata=attn_metadata) # decoder outputs consists of # (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( decoder_input_ids=input_ids, decoder_positions=positions, encoder_hidden_states=encoder_hidden_states, kv_caches=kv_caches, attn_metadata=attn_metadata) return decoder_outputs class BartForConditionalGeneration(nn.Module): base_model_prefix = "model" def __init__(self, config: BartConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None): super().__init__() self.config = config self.model = BartModel(config, cache_config, quant_config, lora_config=lora_config) self.unpadded_vocab_size = config.vocab_size if lora_config: self.unpadded_vocab_size += lora_config.lora_extra_vocab_size embed_scale = math.sqrt( config.d_model) if config.scale_embedding else 1.0 self.lm_head = BartParallelLMHead(config.vocab_size, config.d_model, embed_scale=embed_scale) self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, *, encoder_input_ids: torch.Tensor, encoder_positions: torch.Tensor, **kwargs, ) -> torch.Tensor: r""" Args: input_ids torch.Tensor of *decoder* input token ids. positions torch.Tensor of *decoder* position indices. encoder_input_ids torch.Tensor of *encoder* input token ids. encoder_positions torch.Tensor of *encoder* position indices kv_caches: Layer-wise list of KV cache tensors attn_metadata: Aphrodite Attention metadata structure Returns: Output torch.Tensor """ return self.model(input_ids, positions, encoder_input_ids, encoder_positions, kv_caches, attn_metadata) def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: Optional[torch.Tensor], sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens stacked_params_mapping = { "q_proj": { "param_name": "qkv_proj", "shard_id": "q", }, "k_proj": { "param_name": "qkv_proj", "shard_id": "k", }, "v_proj": { "param_name": "qkv_proj", "shard_id": "v", }, } params_mapping = { "beta": "bias", "gamma": "weight", "LayerNorm": "layernorm", } def _rename_key(self, key: str): prefix = f"{self.base_model_prefix}." key = key[len(prefix):] if key.startswith(prefix) else key for src, dst in self.params_mapping.items(): key = key.replace(src, dst) return key def _rename_stacked_param( self, name: str, ) -> Tuple[str, Optional[str]]: for key, mapping in self.stacked_params_mapping.items(): if key in name: name = name.replace(key, mapping["param_name"]) return name, mapping["shard_id"] return name, None def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): model_params_dict = dict(self.model.named_parameters()) top_params_dict = dict(self.named_parameters()) shared_embedding_weight = None shared_embedding_shard_id = None for name, loaded_weight in weights: name = self._rename_key(name) name, shard_id = self._rename_stacked_param(name) if ('shared.weight' in name or 'encoder.embed_tokens.weight' in name or 'decoder.embed_tokens.weight' in name or 'lm_head.weight' in name): assert shared_embedding_weight is None, ( "Conflicting embedding weights.") shared_embedding_weight = loaded_weight shared_embedding_shard_id = shard_id else: # Skip the specific downstream task weight. if name.startswith('cls.'): continue # use Pooler instead. if name.startswith('pooler.'): continue # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in model_params_dict: continue param = model_params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) if shard_id: weight_loader(param, loaded_weight, shard_id) else: weight_loader(param, loaded_weight) # Assign shared weight values encoder_in_param = model_params_dict['encoder.embed_tokens.weight'] encoder_in_weight_loader = getattr(encoder_in_param, "weight_loader", default_weight_loader) decoder_in_param = model_params_dict['decoder.embed_tokens.weight'] decoder_in_weight_loader = getattr(decoder_in_param, "weight_loader", default_weight_loader) lm_head_in_param = top_params_dict['lm_head.weight'] lm_head_in_weight_loader = getattr(lm_head_in_param, "weight_loader", default_weight_loader) assert shared_embedding_weight is not None if shared_embedding_shard_id: encoder_in_weight_loader(encoder_in_param, shared_embedding_weight, shared_embedding_shard_id) decoder_in_weight_loader(decoder_in_param, shared_embedding_weight, shared_embedding_shard_id) lm_head_in_weight_loader(lm_head_in_param, shared_embedding_weight, shared_embedding_shard_id) else: encoder_in_weight_loader(encoder_in_param, shared_embedding_weight) decoder_in_weight_loader(decoder_in_param, shared_embedding_weight) lm_head_in_weight_loader(lm_head_in_param, shared_embedding_weight)