# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Mixtral model.""" from typing import Iterable, List, Optional, Tuple import torch from torch import nn from transformers import MixtralConfig from aphrodite import _custom_ops as ops from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig, LoRAConfig from aphrodite.common.sequence import SamplerOutput from aphrodite.common.utils import print_warning_once from aphrodite.distributed import (get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce) from aphrodite.modeling.layers.fused_moe import fused_moe from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import (QKVParallelLinear, ReplicatedLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.models.interfaces import SupportsLoRA from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.modeling.utils import set_weight_attrs from aphrodite.quantization.base_config import QuantizationConfig from aphrodite.quantization.fp8 import (Fp8Config, per_tensor_dequantize, per_tensor_quantize) class MixtralMoE(nn.Module): """A tensor-parallel MoE implementation for Mixtral that shards each expert across all ranks. Each expert's weights are sharded across all ranks and a fused MoE kernel is used for the forward pass, and finally we reduce the outputs across ranks. """ def __init__( self, num_experts: int, top_k: int, hidden_size: int, intermediate_size: int, params_dtype: Optional[torch.dtype] = None, tp_size: Optional[int] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.tp_size = tp_size or get_tensor_model_parallel_world_size() self.num_total_experts = num_experts self.top_k = top_k self.hidden_size = hidden_size self.intermediate_size = intermediate_size // self.tp_size self.quant_config = quant_config # FIXME(pcmoritz): Make this more general to support different # quantization schemes self.use_fp8 = isinstance(quant_config, Fp8Config) if params_dtype is None: params_dtype = torch.get_default_dtype() self.params_dtype = params_dtype # Gate always runs at half / full precision for now. self.gate = ReplicatedLinear(self.hidden_size, self.num_total_experts, bias=False, params_dtype=self.params_dtype, quant_config=None) if self.use_fp8 and self.quant_config.is_checkpoint_fp8_serialized: params_dtype = torch.float8_e4m3fn self.w13_weight = nn.Parameter(torch.empty(self.num_total_experts, 2 * self.intermediate_size, self.hidden_size, dtype=params_dtype), requires_grad=False) self.w2_weight = nn.Parameter(torch.empty(self.num_total_experts, self.hidden_size, self.intermediate_size, dtype=params_dtype), requires_grad=False) set_weight_attrs(self.w13_weight, { "weight_loader": self.weight_loader, }) set_weight_attrs(self.w2_weight, { "weight_loader": self.weight_loader, }) # Used for fp8. self.w13_scale = None self.w2_scale = None self.a13_scale = None self.a2_scale = None if self.use_fp8: # WEIGHT_SCALE (for fp8) # Allocate 2 scales for w1 and w3 respectively. # They will be combined to a single scale after weight loading. self.w13_scale = nn.Parameter(torch.ones(self.num_total_experts, 2, dtype=torch.float32), requires_grad=False) self.w2_scale = nn.Parameter(torch.ones(self.num_total_experts, dtype=torch.float32), requires_grad=False) # If loading fp8 checkpoint, pass the weight loaders. # If loading an fp16 checkpoint, do not (we will quantize in # process_weights_after_loading() if quant_config.is_checkpoint_fp8_serialized: set_weight_attrs(self.w13_scale, { "weight_loader": self.weight_loader, }) set_weight_attrs(self.w2_scale, { "weight_loader": self.weight_loader, }) # ACT_SCALE (for fp8) if quant_config.activation_scheme == "static": if not quant_config.is_checkpoint_fp8_serialized: raise ValueError( "Found static activation scheme for checkpoint that " "was not serialized fp8.") self.a13_scale = nn.Parameter(torch.ones( self.num_total_experts, dtype=torch.float32), requires_grad=False) self.a2_scale = nn.Parameter(torch.ones(self.num_total_experts, dtype=torch.float32), requires_grad=False) set_weight_attrs(self.a13_scale, { "weight_loader": self.weight_loader, }) set_weight_attrs(self.a2_scale, { "weight_loader": self.weight_loader, }) def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor, weight_name: str, expert_id: int): tp_rank = get_tensor_model_parallel_rank() param_data = param.data shard_size = self.intermediate_size shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size) if weight_name.endswith("w1.weight"): param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :] if weight_name.endswith("w3.weight"): param_data[expert_id, shard_size:2 * shard_size, :] = loaded_weight[shard, :] if weight_name.endswith("w2.weight"): param_data[expert_id, :, :] = loaded_weight[:, shard] # Loading scales if "input_scale" in weight_name or "w2.weight_scale" in weight_name: if param_data[expert_id] != 1 and (param_data[expert_id] - loaded_weight).abs() > 1e-5: raise ValueError( "act_scales of w1 and w3 of a layer " f"must be equal. But got {param_data[expert_id]} " f"vs. {loaded_weight}") param_data[expert_id] = loaded_weight elif "weight_scale" in weight_name: # We have to keep the weight scales of w1 and w3 because # we need to re-quantize w1/w3 weights after weight loading. assert "w1" in weight_name or "w3" in weight_name shard_id = 0 if "w1" in weight_name else 1 param_data[expert_id][shard_id] = loaded_weight def process_weights_after_loading(self): # Fp8 is the only case where we need to process after loading. if not self.use_fp8: return # If checkpoint is fp16, quantize here. if not self.quant_config.is_checkpoint_fp8_serialized: w13_weight = torch.empty_like(self.w13_weight.data, dtype=torch.float8_e4m3fn) w2_weight = torch.empty_like(self.w2_weight.data, dtype=torch.float8_e4m3fn) # Re-initialize w13_scale because we directly quantize # merged w13 weights and generate a single scaling factor. self.w13_scale = nn.Parameter(torch.ones(self.num_total_experts, dtype=torch.float32), requires_grad=False) for expert in range(self.num_total_experts): w13_weight[expert, :, :], self.w13_scale[ expert] = ops.scaled_fp8_quant( self.w13_weight.data[expert, :, :]) w2_weight[expert, :, :], self.w2_scale[ expert] = ops.scaled_fp8_quant( self.w2_weight.data[expert, :, :]) self.w13_weight = nn.Parameter(w13_weight, requires_grad=False) self.w2_weight = nn.Parameter(w2_weight, requires_grad=False) else: # If checkpoint is fp8 + static, cleanup act_scales. # Since state_dict has an input_scale per expert but our kernels # are passed one input_scale shared across all experts. if self.quant_config.activation_scheme == "static": if self.a13_scale is None or self.a2_scale is None: raise ValueError( "QuantConfig has static quantization, but found " "activation scales are None.") if (not all_close_1d(self.a13_scale) or not all_close_1d(self.a2_scale)): print_warning_once( "Found act_scales that are not equal for " "fp8 MoE layer. Using the maximum across experts " "for each layer. ") self.a13_scale = nn.Parameter(self.a13_scale.max(), requires_grad=False) self.a2_scale = nn.Parameter(self.a2_scale.max(), requires_grad=False) assert self.w13_scale is not None shard_size = self.intermediate_size max_w13_scales = self.w13_scale.max(dim=1).values for expert_id in range(self.num_total_experts): start = 0 for shard_id in range(2): dq_weight = per_tensor_dequantize( self.w13_weight[expert_id][start:start + shard_size, :], self.w13_scale[expert_id][shard_id]) self.w13_weight[expert_id][ start:start + shard_size, :] = per_tensor_quantize( dq_weight, max_w13_scales[expert_id]) start += shard_size self.w13_scale = nn.Parameter(max_w13_scales, requires_grad=False) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: num_tokens, hidden_size = hidden_states.shape hidden_states = hidden_states.view(-1, self.hidden_size) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states) final_hidden_states = fused_moe(hidden_states, self.w13_weight, self.w2_weight, router_logits, self.top_k, renormalize=True, inplace=True, use_fp8=self.use_fp8, w1_scale=self.w13_scale, w2_scale=self.w2_scale, a1_scale=self.a13_scale, a2_scale=self.a2_scale) if self.tp_size > 1: final_hidden_states = tensor_model_parallel_all_reduce( final_hidden_states) return final_hidden_states.view(num_tokens, hidden_size) class MixtralAttention(nn.Module): def __init__(self, hidden_size: int, num_heads: int, num_kv_heads: int, max_position: int = 4096 * 32, rope_theta: float = 10000, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position, base=int(self.rope_theta), is_neox_style=True, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.o_proj(attn_output) return output class MixtralDecoderLayer(nn.Module): def __init__( self, config: MixtralConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size # Requires transformers > 4.32.0 rope_theta = getattr(config, "rope_theta", 10000) self.self_attn = MixtralAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, max_position=config.max_position_embeddings, num_kv_heads=config.num_key_value_heads, rope_theta=rope_theta, cache_config=cache_config, quant_config=quant_config) self.block_sparse_moe = MixtralMoE( num_experts=config.num_local_experts, top_k=config.num_experts_per_tok, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, quant_config=quant_config) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], ) -> torch.Tensor: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.block_sparse_moe(hidden_states) return hidden_states, residual class MixtralModel(nn.Module): def __init__( self, config: MixtralConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, ) -> None: super().__init__() self.padding_idx = config.pad_token_id lora_vocab = (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) if lora_config else 0 self.vocab_size = config.vocab_size + lora_vocab self.org_vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, ) self.layers = nn.ModuleList([ MixtralDecoderLayer(config, cache_config, quant_config=quant_config) for _ in range(config.num_hidden_layers) ]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer(positions, hidden_states, kv_caches[i], attn_metadata, residual) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class MixtralForCausalLM(nn.Module, SupportsLoRA): fall_back_to_pt_during_load = False packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], } # LoRA specific attributes supported_lora_modules = [ "qkv_proj", "o_proj", "embed_tokens", "lm_head", ] embedding_modules = { "embed_tokens": "input_embeddings", "lm_head": "output_embeddings", } embedding_padding_modules = ["lm_head"] def __init__( self, config: MixtralConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, ) -> None: super().__init__() self.config = config self.lora_config = lora_config self.model = MixtralModel(config, cache_config, quant_config, lora_config=lora_config) self.unpadded_vocab_size = config.vocab_size if lora_config: self.unpadded_vocab_size += lora_config.lora_extra_vocab_size self.lm_head = ParallelLMHead( self.unpadded_vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, padding_size=DEFAULT_VOCAB_PADDING_SIZE # We need bigger padding if using lora for kernel # compatibility if not lora_config else lora_config.lora_vocab_padding_size, ) self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits(self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> torch.Tensor: logits = self.logits_processor(self.lm_head.weight, hidden_states, sampling_metadata) return logits def sample( self, logits: Optional[torch.Tensor], sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] expert_params_mapping = [ # These are the weight scales for the experts # (param_name, weight_name, expert_id) ("w13_scale" if weight_name in ["w1", "w3"] else "w2_scale", f"experts.{expert_id}.{weight_name}.weight_scale", expert_id) for expert_id in range(self.config.num_local_experts) for weight_name in ["w1", "w2", "w3"] ] + [ # These are the weights for the experts # (param_name, weight_name, expert_id) ("w13_weight" if weight_name in ["w1", "w3"] else "w2_weight", f"experts.{expert_id}.{weight_name}.weight", expert_id) for expert_id in range(self.config.num_local_experts) for weight_name in ["w1", "w2", "w3"] ] + [ # These are the activation scales for the experts # (param_name, weight_name, expert_id) ("a13_scale" if weight_name in ["w1", "w3"] else "a2_scale", f"experts.{expert_id}.{weight_name}.input_scale", expert_id) for expert_id in range(self.config.num_local_experts) for weight_name in ["w1", "w2", "w3"] ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for param_name, weight_name, expert_id in expert_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, weight_name, expert_id=expert_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Remapping the name of FP8 kv-scale. if name.endswith("kv_scale"): remapped_kv_scale_name = name.replace( ".kv_scale", ".attn.kv_scale") if remapped_kv_scale_name not in params_dict: print_warning_once( "Found kv scale in the checkpoint " f"(e.g. {name}), but not found the expected " f"name in the model " f"(e.g. {remapped_kv_scale_name}). " "kv-scale is not loaded.") continue else: name = remapped_kv_scale_name param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) def all_close_1d(x: torch.Tensor) -> bool: assert len(x.shape) == 1 return all(torch.allclose(x[0], x[i]) for i in range(x.shape[0]))