from typing import Any, Dict, List, Optional import torch from torch.nn.parameter import Parameter from aphrodite._C import ops from aphrodite.modeling.layers.linear import LinearMethodBase, set_weight_attrs from aphrodite.modeling.layers.quantization.base_config import QuantizationConfig class MarlinConfig(QuantizationConfig): """Config class for Marlin. Reference: https://github.com/IST-DASLab/marlin/tree/master """ def __init__( self, group_size: int, ) -> None: # Group size for the quantization. self.group_size = group_size if self.group_size != 128 and self.group_size != -1: raise ValueError( "Currently, only group size 128 and -1 (channelwise) is supported for " f"Marlin, but got group_size of {self.group_size}") # 4 Bits packed into 32 bit datatype. self.pack_factor = 32 // 4 # Tile size used by marlin kernels. self.tile_size = 16 # Min out_features dim self.min_n_threads = 64 # Min in_features dim self.min_k_threads = 128 # Max parallel problems to solve at once (improves large batch performance) self.max_parallel = 16 # Permutation length used by the marlin kernels. self.perm_len = 1024 def __repr__(self) -> str: return f"MarlinConfig(group_size={self.group_size}" @classmethod def get_name(cls) -> str: return "marlin" @classmethod def get_supported_act_dtypes(cls) -> List[torch.dtype]: return [torch.half] @classmethod # Need to figure it out def get_min_capability(cls) -> int: return 80 @classmethod def get_config_filenames(cls) -> List[str]: return ["quantize_config.json"] @classmethod def from_config(cls, config: Dict[str, Any]) -> "MarlinConfig": group_size = cls.get_from_keys(config, ["group_size"]) return cls(group_size) def get_linear_method(self) -> "MarlinLinearMethod": return MarlinLinearMethod(self) def get_scaled_act_names(self) -> List[str]: return [] def merge_weight(self) -> bool: return False def rope_style(self) -> Optional[bool]: return None class MarlinLinearMethod(LinearMethodBase): """Linear method for Marlin. Args: quant_config: The Marlin quantization config. """ def __init__(self, quant_config: MarlinConfig): self.quant_config = quant_config def create_weights( self, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, ) -> Dict[str, Any]: del output_size # Unused. if params_dtype != torch.float16: raise ValueError( f"The params dtype must be float16, but got {params_dtype}") output_size_per_partition = sum(output_partition_sizes) # Validate output_size_per_partition if output_size_per_partition % self.quant_config.min_n_threads != 0: raise ValueError( f"Weight output_size_per_partition = {output_size_per_partition} is not divisible by min_n_threads = {self.quant_config.min_n_threads}." ) if output_size_per_partition % self.quant_config.pack_factor != 0: raise ValueError( f"Weight output_size_per_partition = {output_size_per_partition} is not divisible by pack_factor = {self.quant_config.pack_factor}." ) # Validate input_size_per_partition if input_size_per_partition % self.quant_config.min_k_threads != 0: raise ValueError( f"Weight input_size_per_partition = {input_size_per_partition} is not divisible by min_k_threads = {self.quant_config.min_k_threads}." ) if self.quant_config.group_size != -1 and input_size_per_partition % self.quant_config.group_size != 0: raise ValueError( f"Weight input_size_per_partition = f{input_size_per_partition} is not divisible by group_size = {self.quant_config.group_size}." ) # Check that we have at least 4 tiles horizontally in the shard num_tiles_per_perm = self.quant_config.perm_len // ( self.quant_config.tile_size**2) if output_size_per_partition % num_tiles_per_perm != 0: raise ValueError( "Each permutation group must reside on the same gpu") # Quantized 4Bit weights packed into Int32. qweight = Parameter( torch.empty( input_size_per_partition // self.quant_config.tile_size, output_size_per_partition * self.quant_config.tile_size // self.quant_config.pack_factor, device="cuda", dtype=torch.int32, ), requires_grad=False, ) set_weight_attrs( qweight, { "input_dim": 0, "output_dim": 1, "packed_dim": 1, "pack_factor": self.quant_config.pack_factor, "marlin_tile_size": self.quant_config.tile_size, }, ) # Determine if channelwise or not input_groups = 1 if self.quant_config.group_size == -1 else input_size_per_partition // self.quant_config.group_size scales = Parameter( torch.empty( input_groups, output_size_per_partition, device="cuda", dtype=params_dtype, ), requires_grad=False, ) set_weight_attrs( scales, { "input_dim": None if input_groups == 1 else 0, "output_dim": 1, }, ) # Allocate workspace (Used for internal locking mechanism) max_workspace_size = ( output_size_per_partition // self.quant_config.min_n_threads) * self.quant_config.max_parallel workspace = Parameter(torch.zeros(max_workspace_size, device="cuda", dtype=torch.int), requires_grad=False) return { "B": qweight, "s": scales, "workspace": workspace, } def apply_weights( self, weights: Dict[str, Any], x: torch.Tensor, bias: Optional[torch.Tensor] = None, ) -> torch.Tensor: qweight = weights["B"] scales = weights["s"] workspace = weights["workspace"] x_2d = x.view(-1, x.shape[-1]) size_m = x_2d.shape[0] size_k = x_2d.shape[1] size_n = scales.shape[1] output_2d = ops.marlin_gemm(x_2d, qweight, scales, workspace, size_m, size_n, size_k) output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], )) if bias is not None: output.add_(bias) # In-place add return output