### Quantizer Utilities `quantize.py`: NVIDIA Quantization utilities using AMMO, ported from TensorRT-LLM: `https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/quantization/quantize.py` ### Prerequisite #### AMMO (AlgorithMic Model Optimization) Installation: nvidia-ammo 0.7.1 or later `pip install --no-cache-dir --extra-index-url https://pypi.nvidia.com nvidia-ammo` #### AMMO Download (code and docs) `https://developer.nvidia.com/downloads/assets/cuda/files/nvidia-ammo/nvidia_ammo-0.5.0.tar.gz` `https://developer.nvidia.com/downloads/assets/cuda/files/nvidia-ammo/nvidia_ammo-0.7.1.tar.gz` ### Usage #### Run on H100 system for speed if FP8; number of GPUs depends on the model size #### Example: quantize Llama2-7b model from HF to FP8 with FP8 KV Cache: `python quantize.py --model_dir ./ll2-7b --dtype float16 --qformat fp8 --kv_cache_dtype fp8 --output_dir ./ll2_7b_fp8 --calib_size 512 --tp_size 1` Outputs: model structure, quantized model & parameters (with scaling factors) are in JSON and Safetensors (npz is generated only for the reference) ``` # ll ./ll2_7b_fp8/ total 19998244 drwxr-xr-x 2 root root 4096 Feb 7 01:08 ./ drwxrwxr-x 8 1060 1061 4096 Feb 7 01:08 ../ -rw-r--r-- 1 root root 176411 Feb 7 01:08 llama_tp1.json -rw-r--r-- 1 root root 13477087480 Feb 7 01:09 llama_tp1_rank0.npz -rw-r--r-- 1 root root 7000893272 Feb 7 01:08 rank0.safetensors # ```