import pytest import torch from aphrodite._custom_ops import scaled_int8_quant from tests.kernels.quant_utils import ref_dynamic_per_token_quant DTYPES = [torch.half, torch.bfloat16, torch.float] HIDDEN_SIZES = [16, 67, 768, 2048, 5120, 5137, 8192, 8193] # Arbitrary values for testing NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing SEEDS = [0] SCALE = [0.1, 0.5, 0.8, 1.2, 2.1] @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @torch.inference_mode() def test_dynamic_scaled_int8_quant(num_tokens: int, hidden_size: int, dtype: torch.dtype, seed: int) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000 # reference ref_out, ref_scales = ref_dynamic_per_token_quant(x, torch.int8) # kernel ops_out, ops_scales = scaled_int8_quant(x) torch.testing.assert_close(ops_scales, ref_scales) torch.testing.assert_close( ops_out, ref_out, atol=1, rtol=0.0) # big atol to account for rounding errors @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @pytest.mark.parametrize("scale", SCALE) @torch.inference_mode() def test_static_scaled_int8_quant(num_tokens: int, hidden_size: int, dtype: torch.dtype, seed: int, scale: float) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) int8_traits = torch.iinfo(torch.int8) x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000 scale = torch.tensor([scale], dtype=torch.float32, device="cuda") out1 = (x / scale).round().clamp(int8_traits.min, int8_traits.max).to(torch.int8) out2, _ = scaled_int8_quant(x, scale) torch.testing.assert_close( out1, out2, atol=1, rtol=0.0) # big atol to account for rounding errors