# This unit test should be moved to a new # tests/test_guided_decoding directory. import pytest import torch from transformers import AutoTokenizer from aphrodite.endpoints.openai.protocol import CompletionRequest from aphrodite.modeling.guided_decoding import ( get_guided_decoding_logits_processor) from aphrodite.modeling.guided_decoding.outlines_logits_processors import ( JSONLogitsProcessor, RegexLogitsProcessor) def test_guided_logits_processors(sample_regex, sample_json_schema): """Basic unit test for RegexLogitsProcessor and JSONLogitsProcessor.""" tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta') regex_LP = RegexLogitsProcessor(sample_regex, tokenizer) json_LP = JSONLogitsProcessor(sample_json_schema, tokenizer, whitespace_pattern=None) token_ids = tokenizer.encode( f"Give an example IPv4 address with this regex: {sample_regex}") tensor = torch.rand(32000) original_tensor = torch.clone(tensor) regex_LP(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor) token_ids = tokenizer.encode( f"Give an employee profile that fits this schema: {sample_json_schema}" ) tensor = torch.rand(32000) original_tensor = torch.clone(tensor) json_LP(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor) @pytest.mark.asyncio @pytest.mark.parametrize("backend", ["outlines", "lm-format-enforcer"]) async def test_guided_logits_processor_black_box(backend: str, sample_regex, sample_json_schema): tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta') token_ids = tokenizer.encode( f"Give an example IPv4 address with this regex: {sample_regex}") regex_request = CompletionRequest(model='test', prompt=token_ids, guided_regex=sample_regex) regex_lp = await get_guided_decoding_logits_processor( backend, regex_request, tokenizer) assert regex_lp is not None tensor = torch.rand(32000) original_tensor = torch.clone(tensor) tensor = regex_lp(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor) token_ids = tokenizer.encode( f"Give an employee profile that fits this schema: {sample_json_schema}" ) json_request = CompletionRequest(model='test', prompt=token_ids, guided_json=sample_json_schema) json_lp = await get_guided_decoding_logits_processor( backend, json_request, tokenizer) assert json_lp is not None tensor = torch.rand(32000) original_tensor = torch.clone(tensor) tensor = json_lp(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor)