import pytest from ....utils import multi_gpu_test @multi_gpu_test(num_gpus=2) @pytest.mark.parametrize("distributed_executor_backend", ["ray", "mp"]) @pytest.mark.parametrize("model", [ "llava-hf/llava-1.5-7b-hf", "llava-hf/llava-v1.6-mistral-7b-hf", "facebook/chameleon-7b", ]) def test_models(hf_runner, vllm_runner, image_assets, distributed_executor_backend, model) -> None: dtype = "half" max_tokens = 5 num_logprobs = 5 tensor_parallel_size = 2 if model.startswith("llava-hf/llava-1.5"): from .test_llava import models, run_test elif model.startswith("llava-hf/llava-v1.6"): from .test_llava_next import models, run_test # type: ignore[no-redef] elif model.startswith("facebook/chameleon"): from .test_chameleon import models, run_test # type: ignore[no-redef] else: raise NotImplementedError(f"Unsupported model: {model}") run_test( hf_runner, vllm_runner, image_assets, model=models[0], # So that LLaVA-NeXT processor may return nested list size_factors=[0.25, 0.5, 1.0], dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, )