#pragma once #include #include "core/scalar_type.hpp" #ifndef USE_ROCM // AQLM torch::Tensor aqlm_gemm(const torch::Tensor& input, const torch::Tensor& codes, const torch::Tensor& codebooks, const torch::Tensor& scales, const std::vector& codebook_partition_sizes, const std::optional& bias); torch::Tensor aqlm_dequant( const torch::Tensor& codes, const torch::Tensor& codebooks, const std::vector& codebook_partition_sizes); // AWQ torch::Tensor awq_gemm(torch::Tensor _in_feats, torch::Tensor _kernel, torch::Tensor _scaling_factors, torch::Tensor _zeros, int64_t split_k_iters); torch::Tensor awq_dequantize(torch::Tensor _kernel, torch::Tensor _scaling_factors, torch::Tensor _zeros, int64_t split_k_iters, int64_t thx, int64_t thy); torch::Tensor awq_group_gemm(torch::Tensor _in_feats, torch::Tensor _kernel, torch::Tensor _scaling_factors, torch::Tensor _zeros, torch::Tensor _topk_weights, torch::Tensor _sorted_token_ids_ptr, torch::Tensor _expert_ids_ptr, torch::Tensor _num_tokens_post_padded, bool mul_weights, int64_t split_k_iters); #endif // GPTQ torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight, torch::Tensor b_gptq_qzeros, torch::Tensor b_gptq_scales, torch::Tensor b_g_idx, bool use_exllama, int64_t bit); void gptq_shuffle(torch::Tensor q_weight, torch::Tensor q_perm, int64_t bit); torch::Tensor group_gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight, torch::Tensor b_gptq_qzeros, torch::Tensor b_gptq_scales, torch::Tensor b_g_idx, torch::Tensor topk_weights, torch::Tensor sorted_token_ids_ptr, torch::Tensor expert_ids_ptr, torch::Tensor num_tokens_post_padded, bool mul_weights, bool use_exllama); torch::Tensor dequant_gptq(torch::Tensor b_q_weight, torch::Tensor b_gptq_qzeros, torch::Tensor b_gptq_scales, torch::Tensor b_g_idx, int64_t bits, bool use_exllama); #ifndef USE_ROCM // Marlin torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k); torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_meta, torch::Tensor& b_scales, torch::Tensor& workspace, aphrodite::ScalarTypeTorchPtr const& b_q_type, int64_t size_m, int64_t size_n, int64_t size_k); torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& b_zeros, torch::Tensor& g_idx, torch::Tensor& perm, torch::Tensor& workspace, aphrodite::ScalarTypeTorchPtr const& b_q_type, int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full, bool has_zp, bool use_fp32_reduce, bool is_zp_float); torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, int64_t size_k, int64_t size_n, int64_t num_bits); torch::Tensor gptq_marlin_repack_meta(torch::Tensor& b_q_weight, torch::Tensor& perm, c10::SymInt size_k, c10::SymInt size_n, int64_t num_bits); torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, int64_t size_n, int64_t num_bits); torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight, c10::SymInt size_k, c10::SymInt size_n, int64_t num_bits); torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& workspace, int64_t num_bits, int64_t size_m, int64_t size_n, int64_t size_k); // GGUF torch::Tensor ggml_dequantize(torch::Tensor W, int64_t type, int64_t m, int64_t n); torch::Tensor ggml_mul_mat_vec_a8(torch::Tensor W, torch::Tensor X, int64_t type, int64_t row); torch::Tensor ggml_mul_mat_a8(torch::Tensor W, torch::Tensor X, int64_t type, int64_t row); // QuIP# at::Tensor e8p_mm_origorder(const at::Tensor& A, const at::Tensor& B, const at::Tensor& CB); void decompress_e8p_origorder(torch::Tensor YIs, torch::Tensor CB, torch::Tensor& Y); #ifndef _WIN32 // Cutlass Kernels bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability); void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, torch::Tensor const& b_scales, c10::optional const& bias); void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, torch::Tensor const& b_scales, torch::Tensor const& azp_adj, c10::optional const& azp, c10::optional const& bias); // Machete Kernels namespace machete { std::vector supported_schedules( aphrodite::ScalarTypeTorchPtr const& btype); torch::Tensor gemm(torch::Tensor const& A, torch::Tensor const& B, aphrodite::ScalarTypeTorchPtr const& btype, c10::optional const& scales, c10::optional const& zeros, c10::optional group_size, c10::optional const& C, c10::optional alpha, c10::optional beta, c10::optional schedule); torch::Tensor prepack_B(torch::Tensor const& B, aphrodite::ScalarTypeTorchPtr const& btype); }; // namespace machete torch::Tensor marlin_qqq_gemm(torch::Tensor const& a, torch::Tensor const& b_q_weight, torch::Tensor const& s_tok, torch::Tensor const& s_ch, torch::Tensor const& s_group, torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k); #endif torch::Tensor fp_eXmY_linear_forward_cuda(int64_t EXPONENT, int64_t MANTISSA, torch::Tensor _in_feats, torch::Tensor _weights, torch::Tensor _scales, int64_t splitK = 1); #endif void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor const& scale, c10::optional const& azp); void dynamic_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scales, c10::optional const& azp); // SqueezeLLM void squeezellm_gemm(torch::Tensor vec, torch::Tensor mat, torch::Tensor mul, torch::Tensor lookup_table); // FP8 void static_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor const& scale); void dynamic_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scale); void dynamic_per_token_scaled_fp8_quant( torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scale, c10::optional const& scale_ub);