/****************************************************************************** * Copyright (c) 2023, Tri Dao. ******************************************************************************/ // clang-format off // adapted from https://github.com/state-spaces/mamba/blob/main/csrc/selective_scan/selective_scan.h #pragma once #ifndef USE_ROCM #include #else #include #endif #include //////////////////////////////////////////////////////////////////////////////////////////////////// struct SSMParamsBase { using index_t = uint32_t; int batch, dim, seqlen, dstate, n_groups, n_chunks; int dim_ngroups_ratio; bool is_variable_B; bool is_variable_C; bool delta_softplus; index_t A_d_stride; index_t A_dstate_stride; index_t B_batch_stride; index_t B_d_stride; index_t B_dstate_stride; index_t B_group_stride; index_t C_batch_stride; index_t C_d_stride; index_t C_dstate_stride; index_t C_group_stride; index_t u_batch_stride; index_t u_d_stride; index_t delta_batch_stride; index_t delta_d_stride; index_t z_batch_stride; index_t z_d_stride; index_t out_batch_stride; index_t out_d_stride; index_t out_z_batch_stride; index_t out_z_d_stride; // Common data pointers. void *__restrict__ A_ptr; void *__restrict__ B_ptr; void *__restrict__ C_ptr; void *__restrict__ D_ptr; void *__restrict__ u_ptr; void *__restrict__ delta_ptr; void *__restrict__ delta_bias_ptr; void *__restrict__ out_ptr; void *__restrict__ x_ptr; void *__restrict__ z_ptr; void *__restrict__ out_z_ptr; void *__restrict__ index_ptr; }; #ifndef USE_ROCM constexpr size_t custom_max(std::initializer_list ilist) { return std::max(ilist); } template constexpr T constexpr_min(T a, T b) { return std::min(a, b); } #else constexpr size_t custom_max(std::initializer_list ilist) { return *std::max_element(ilist.begin(), ilist.end()); } template constexpr T constexpr_min(T a, T b) { return a < b ? a : b; } #endif #define MAX_DSTATE 256 inline __device__ float2 operator+(const float2 & a, const float2 & b){ return {a.x + b.x, a.y + b.y}; } inline __device__ float3 operator+(const float3 &a, const float3 &b) { return {a.x + b.x, a.y + b.y, a.z + b.z}; } inline __device__ float4 operator+(const float4 & a, const float4 & b){ return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w}; } //////////////////////////////////////////////////////////////////////////////////////////////////// template struct BytesToType {}; template<> struct BytesToType<16> { using Type = uint4; static_assert(sizeof(Type) == 16); }; template<> struct BytesToType<8> { using Type = uint64_t; static_assert(sizeof(Type) == 8); }; template<> struct BytesToType<4> { using Type = uint32_t; static_assert(sizeof(Type) == 4); }; template<> struct BytesToType<2> { using Type = uint16_t; static_assert(sizeof(Type) == 2); }; template<> struct BytesToType<1> { using Type = uint8_t; static_assert(sizeof(Type) == 1); }; //////////////////////////////////////////////////////////////////////////////////////////////////// template struct Converter{ static inline __device__ void to_float(const scalar_t (&src)[N], float (&dst)[N]) { #pragma unroll for (int i = 0; i < N; ++i) { dst[i] = src[i]; } } }; template struct Converter{ static inline __device__ void to_float(const at::Half (&src)[N], float (&dst)[N]) { static_assert(N % 2 == 0); auto &src2 = reinterpret_cast(src); auto &dst2 = reinterpret_cast(dst); #pragma unroll for (int i = 0; i < N / 2; ++i) { dst2[i] = __half22float2(src2[i]); } } }; #if __CUDA_ARCH__ >= 800 template struct Converter{ static inline __device__ void to_float(const at::BFloat16 (&src)[N], float (&dst)[N]) { static_assert(N % 2 == 0); auto &src2 = reinterpret_cast(src); auto &dst2 = reinterpret_cast(dst); #pragma unroll for (int i = 0; i < N / 2; ++i) { dst2[i] = __bfloat1622float2(src2[i]); } } }; #endif //////////////////////////////////////////////////////////////////////////////////////////////////// template struct SSMScanOp; template<> struct SSMScanOp { __device__ __forceinline__ float2 operator()(const float2 &ab0, const float2 &ab1) const { return make_float2(ab1.x * ab0.x, ab1.x * ab0.y + ab1.y); } }; // A stateful callback functor that maintains a running prefix to be applied // during consecutive scan operations. template struct SSMScanPrefixCallbackOp { using scan_t = std::conditional_t, float2, float4>; scan_t running_prefix; // Constructor __device__ SSMScanPrefixCallbackOp(scan_t running_prefix_) : running_prefix(running_prefix_) {} // Callback operator to be entered by the first warp of threads in the block. // Thread-0 is responsible for returning a value for seeding the block-wide scan. __device__ scan_t operator()(scan_t block_aggregate) { scan_t old_prefix = running_prefix; running_prefix = SSMScanOp()(running_prefix, block_aggregate); return old_prefix; } }; //////////////////////////////////////////////////////////////////////////////////////////////////// template inline __device__ void load_input(typename Ktraits::input_t *u, typename Ktraits::input_t (&u_vals)[Ktraits::kNItems], typename Ktraits::BlockLoadT::TempStorage &smem_load, int seqlen) { if constexpr (Ktraits::kIsEvenLen) { auto& smem_load_vec = reinterpret_cast(smem_load); using vec_t = typename Ktraits::vec_t; typename Ktraits::BlockLoadVecT(smem_load_vec).Load( reinterpret_cast(u), reinterpret_cast(u_vals) #ifdef USE_ROCM , Ktraits::kNThreads * Ktraits::kNLoads #endif ); } else { typename Ktraits::BlockLoadT(smem_load).Load(u, u_vals, seqlen, 0.f); } } template inline __device__ void load_index(int *u, int (&u_vals)[Ktraits::kNItems], typename Ktraits::BlockLoadIndexT::TempStorage &smem_load_index, int seqlen) { if constexpr (Ktraits::kIsEvenLen) { auto& smem_load_index_vec = reinterpret_cast(smem_load_index); Ktraits::BlockLoadIndexVecT(smem_load_index_vec).Load( reinterpret_cast(u), reinterpret_cast(u_vals) ); } else { Ktraits::BlockLoadIndexT(smem_load_index).Load(u, u_vals, seqlen, 0); } } template inline __device__ void load_weight(typename Ktraits::input_t *Bvar, typename Ktraits::weight_t (&B_vals)[Ktraits::kNItems], typename Ktraits::BlockLoadWeightT::TempStorage &smem_load_weight, int seqlen) { constexpr int kNItems = Ktraits::kNItems; typename Ktraits::input_t B_vals_load[kNItems]; if constexpr (Ktraits::kIsEvenLen) { auto& smem_load_weight_vec = reinterpret_cast(smem_load_weight); using vec_t = typename Ktraits::vec_t; typename Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load( reinterpret_cast(Bvar), reinterpret_cast(B_vals_load) ); } else { typename Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f); } // #pragma unroll // for (int i = 0; i < kNItems; ++i) { B_vals[i] = B_vals_load[i]; } Converter::to_float(B_vals_load, B_vals); } template inline __device__ void store_output(typename Ktraits::input_t *out, const float (&out_vals)[Ktraits::kNItems], typename Ktraits::BlockStoreT::TempStorage &smem_store, int seqlen) { typename Ktraits::input_t write_vals[Ktraits::kNItems]; #pragma unroll for (int i = 0; i < Ktraits::kNItems; ++i) { write_vals[i] = out_vals[i]; } if constexpr (Ktraits::kIsEvenLen) { auto& smem_store_vec = reinterpret_cast(smem_store); using vec_t = typename Ktraits::vec_t; typename Ktraits::BlockStoreVecT(smem_store_vec).Store( reinterpret_cast(out), reinterpret_cast(write_vals) ); } else { typename Ktraits::BlockStoreT(smem_store).Store(out, write_vals, seqlen); } }