/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include #include #include #include "cuda_compat.h" #include #define HOST_DEVICE_FUNC __host__ __device__ #define DEVICE_FUNC __device__ inline void cuErrCheck_(CUresult stat, char const* file, int line) { if (stat != CUDA_SUCCESS) { char const* msg = nullptr; cuGetErrorName(stat, &msg); fprintf(stderr, "CUDA Error: %s %s %d\n", msg, file, line); } } #define cuErrCheck(stat) \ { \ cuErrCheck_((stat), __FILE__, __LINE__); \ } #define CUDACHECK(cmd) \ do { \ cudaError_t e = cmd; \ if (e != cudaSuccess) { \ printf("Failed: Cuda error %s:%d '%s'\n", __FILE__, __LINE__, \ cudaGetErrorString(e)); \ exit(EXIT_FAILURE); \ } \ } while (0) inline constexpr int kMinHistoryTokensPerBlock = 128; inline constexpr float kEnableMinBlockFactor = 4.0; inline constexpr int kTargetWaveFactor = 8; // For multi-block mode. We reserve workspace for this amount of sub-sequences. // This should be enough. Huge batch size may result in larger value, but for // large batch size, multi-block mode is not useful. For llama v2 70b, 6000 // results in ~12MB multi-block workspace, and is enough for > 10 waves. inline constexpr int kXQA_MAX_NUM_SUB_SEQ = 6000; inline constexpr int kMaxBeamWidth = 1; inline int getDevice() { int current_dev_id = 0; CUDACHECK(cudaGetDevice(¤t_dev_id)); return current_dev_id; } inline int getSMVersion() { int device{-1}; CUDACHECK(cudaGetDevice(&device)); int sm_major = 0; int sm_minor = 0; CUDACHECK(cudaDeviceGetAttribute(&sm_major, cudaDevAttrComputeCapabilityMajor, device)); CUDACHECK(cudaDeviceGetAttribute(&sm_minor, cudaDevAttrComputeCapabilityMinor, device)); return sm_major * 10 + sm_minor; } // For xqa kernel IO enum Data_type { DATA_TYPE_FP16, DATA_TYPE_BF16, DATA_TYPE_FP32, DATA_TYPE_INT8, DATA_TYPE_INT32, DATA_TYPE_E4M3, DATA_TYPE_E5M2, DATA_TYPE_UNKNOWN }; // Type trait to map types to enum values template struct TypeToDataType { static constexpr Data_type value = Data_type::DATA_TYPE_UNKNOWN; }; // Specialize the trait for specific types template <> struct TypeToDataType<__nv_bfloat16> { static constexpr Data_type value = Data_type::DATA_TYPE_BF16; }; template <> struct TypeToDataType<__half> { static constexpr Data_type value = Data_type::DATA_TYPE_FP16; }; template <> struct TypeToDataType { static constexpr Data_type value = Data_type::DATA_TYPE_E4M3; }; static inline size_t get_size_in_bytes(size_t n, Data_type dtype) { switch (dtype) { case DATA_TYPE_FP32: return n * 4; case DATA_TYPE_FP16: return n * 2; case DATA_TYPE_INT32: return n * 4; case DATA_TYPE_INT8: return n; case DATA_TYPE_BF16: return n * 2; case DATA_TYPE_E4M3: return n; case DATA_TYPE_E5M2: return n; default: TORCH_CHECK(false, "FMHA Data Type is not supported."); return 0; } } //////////////////////////////////////////////////////////////////////////////////////////////////// static inline size_t get_size_in_bytes(Data_type dtype) { return get_size_in_bytes(1, dtype); } //////////////////////////////////////////////////////////////////////////////////////////////////// constexpr int32_t kSM_70 = 70; constexpr int32_t kSM_72 = 72; constexpr int32_t kSM_75 = 75; constexpr int32_t kSM_80 = 80; constexpr int32_t kSM_86 = 86; constexpr int32_t kSM_89 = 89; constexpr int32_t kSM_90 = 90;