import contextlib from typing import List, Optional, Tuple, Type import torch try: import aphrodite._C except ImportError as e: from loguru import logger logger.warning("Failed to import from vllm._C with %r", e) with contextlib.suppress(ImportError): import aphrodite._moe_C with contextlib.suppress(ImportError): # ruff: noqa: F401 import aphrodite._punica_C def is_custom_op_supported(op_name: str) -> bool: op, overloads = torch._C._jit_get_operation(op_name) return op is not None # activation ops def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None: torch.ops._C.silu_and_mul(out, x) def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None: torch.ops._C.gelu_and_mul(out, x) def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None: torch.ops._C.gelu_tanh_and_mul(out, x) def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None: torch.ops._C.gelu_fast(out, x) def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None: torch.ops._C.gelu_new(out, x) # page attention ops def paged_attention_v1( out: torch.Tensor, query: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, num_kv_heads: int, scale: float, block_tables: torch.Tensor, seq_lens: torch.Tensor, block_size: int, max_seq_len: int, alibi_slopes: Optional[torch.Tensor], kv_cache_dtype: str, kv_scale: float, tp_rank: int = 0, blocksparse_local_blocks: int = 0, blocksparse_vert_stride: int = 0, blocksparse_block_size: int = 64, blocksparse_head_sliding_step: int = 0, ) -> None: torch.ops._C.paged_attention_v1( out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype, kv_scale, tp_rank, blocksparse_local_blocks, blocksparse_vert_stride, blocksparse_block_size, blocksparse_head_sliding_step) def paged_attention_v2( out: torch.Tensor, exp_sum: torch.Tensor, max_logits: torch.Tensor, tmp_out: torch.Tensor, query: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, num_kv_heads: int, scale: float, block_tables: torch.Tensor, seq_lens: torch.Tensor, block_size: int, max_seq_len: int, alibi_slopes: Optional[torch.Tensor], kv_cache_dtype: str, kv_scale: float, tp_rank: int = 0, blocksparse_local_blocks: int = 0, blocksparse_vert_stride: int = 0, blocksparse_block_size: int = 64, blocksparse_head_sliding_step: int = 0, ) -> None: torch.ops._C.paged_attention_v2( out, exp_sum, max_logits, tmp_out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype, kv_scale, tp_rank, blocksparse_local_blocks, blocksparse_vert_stride, blocksparse_block_size, blocksparse_head_sliding_step) # pos encoding ops def rotary_embedding( positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, head_size: int, cos_sin_cache: torch.Tensor, is_neox: bool, ) -> None: torch.ops._C.rotary_embedding(positions, query, key, head_size, cos_sin_cache, is_neox) def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, head_size: int, cos_sin_cache: torch.Tensor, is_neox: bool, rot_dim: int, cos_sin_cache_offsets: torch.Tensor) -> None: torch.ops._C.batched_rotary_embedding(positions, query, key, head_size, cos_sin_cache, is_neox, rot_dim, cos_sin_cache_offsets) # layer norm ops def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, epsilon: float) -> None: torch.ops._C.rms_norm(out, input, weight, epsilon) def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor, weight: torch.Tensor, epsilon: float) -> None: torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon) # quantization ops # awq def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor, zeros: torch.Tensor, split_k_iters: int, thx: int, thy: int) -> torch.Tensor: return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters, thx, thy) def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor, scales: torch.Tensor, split_k_iters: int) -> torch.Tensor: return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters) # gptq def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor, b_g_idx: torch.Tensor, use_exllama: bool, bit: int) -> torch.Tensor: return torch.ops._C.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx, use_exllama, bit) def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor, bit: int) -> None: torch.ops._C.gptq_shuffle(q_weight, q_perm, bit) # squeezellm def squeezellm_gemm(vec: torch.Tensor, mat: torch.Tensor, mul: torch.Tensor, lookup_table: torch.Tensor) -> None: torch.ops._C.squeezellm_gemm(vec, mat, mul, lookup_table) # marlin def marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, b_scales: torch.Tensor, workspace: torch.Tensor, size_m: int, size_n: int, size_k: int) -> torch.Tensor: return torch.ops._C.marlin_gemm(a, b_q_weight, b_scales, workspace, size_m, size_n, size_k) # marlin_24 def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, b_meta: torch.Tensor, b_scales: torch.Tensor, workspace: torch.Tensor, num_bits: int, size_m: int, size_n: int, size_k: int) -> torch.Tensor: return torch.ops._C.gptq_marlin_24_gemm(a, b_q_weight, b_meta, b_scales, workspace, num_bits, size_m, size_n, size_k) # cutlass def cutlass_scaled_mm_dq(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, scale_b: torch.Tensor, out_dtype: Type[torch.dtype]) -> torch.Tensor: assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0) assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16) m = a.shape[0] n = b.shape[1] out = torch.empty((m, n), dtype=out_dtype, device=a.device) torch.ops._C.cutlass_scaled_mm_dq(out, a, b, scale_a, scale_b) return out # aqlm def aqlm_gemm(input: torch.Tensor, codes: torch.Tensor, codebooks: torch.Tensor, scales: torch.Tensor, codebook_partition_sizes: torch.Tensor, bias: Optional[torch.Tensor]) -> torch.Tensor: return torch.ops._C.aqlm_gemm(input, codes, codebooks, scales, codebook_partition_sizes, bias) def aqlm_dequant(codes: torch.Tensor, codebooks: torch.Tensor, codebook_partition_sizes: torch.Tensor) -> torch.Tensor: return torch.ops._C.aqlm_dequant(codes, codebooks, codebook_partition_sizes) # gptq_marlin def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor, size_k: int, size_n: int, num_bits: int) -> torch.Tensor: return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n, num_bits) def gptq_marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, b_scales: torch.Tensor, g_idx: torch.Tensor, perm: torch.Tensor, workspace: torch.Tensor, num_bits: int, size_m: int, size_n: int, size_k: int, is_k_full: bool) -> torch.Tensor: return torch.ops._C.gptq_marlin_gemm(a, b_q_weight, b_scales, g_idx, perm, workspace, num_bits, size_m, size_n, size_k, is_k_full) # fp8 def scaled_fp8_quant( input: torch.Tensor, scale: Optional[torch.Tensor] = None, batch_dim_padding: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Quantize input tensor to FP8 and return quantized tensor and scale. This function supports both static and dynamic quantization: If you provide the scale, it will use static scaling and if you omit it, the scale will be determined dynamically. The function also allows optional padding of the output tensor for downstream kernels that will benefit from padding. Args: input: The input tensor to be quantized to FP8 scale: Optional scaling factor for the FP8 quantization batch_dim_padding: If specified, pad the first dimension of the output to at least this value. Returns: Tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and scaling factor. """ if batch_dim_padding: shape = (max(batch_dim_padding, input.shape[0]), *input.shape[1:]) output = torch.empty(shape, device=input.device, dtype=torch.float8_e4m3fn) else: output = torch.empty_like(input, dtype=torch.float8_e4m3fn) if scale is None: scale = torch.zeros(1, device=input.device, dtype=torch.float32) torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale) else: torch.ops._C.static_scaled_fp8_quant(output, input, scale) return output, scale # int8 def scaled_int8_quant( input: torch.Tensor, scale: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, torch.Tensor]: """ Quantize the input tensor to int8 and return the quantized tensor and scale. Args: input: The input tensor to be quantized to int8. scale: Optional scaling factor for the int8 quantization. When not provided, we invoke dynamic-per-token quantization. Returns: Tuple[Torch.Tensor, Torch.Tensor] : Output int8 tensor and scales. """ output = torch.empty_like(input, dtype=torch.int8) if scale is not None: # static-per-tensor quantization. torch.ops._C.static_scaled_int8_quant(output, input, scale) return output, scale # dynamic-per-token quantization. input_scales = torch.empty((input.numel() // input.shape[-1], 1), device=input.device, dtype=torch.float32) torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales) return output, input_scales # quip# def quip_gemv( A: torch.Tensor, B: torch.Tensor, CB: torch.Tensor, ) -> torch.Tensor: return torch.ops._C.quip_gemv(A, B, CB) def quip_decompress( YIs: torch.Tensor, CB: torch.Tensor, Y: torch.Tensor, ) -> torch.Tensor: return torch.ops._C.quip_decompress(YIs, CB, Y) # moe def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int, block_size: int, sorted_token_ids: torch.Tensor, experts_ids: torch.Tensor, num_tokens_post_pad: torch.Tensor) -> None: torch.ops._C.moe_align_block_size(topk_ids, num_experts, block_size, sorted_token_ids, experts_ids, num_tokens_post_pad) def topk_softmax(topk_weights: torch.Tensor, topk_ids: torch.Tensor, token_expert_indicies: torch.Tensor, gating_output: float) -> None: torch.ops._moe_C.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output) def reshape_and_cache( key: torch.Tensor, value: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, slot_mapping: torch.Tensor, kv_cache_dtype: str, kv_scale: float, ) -> None: torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slot_mapping, kv_cache_dtype, kv_scale) def reshape_and_cache_flash( key: torch.Tensor, value: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, slot_mapping: torch.Tensor, kv_cache_dtype: str, ) -> None: torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache, value_cache, slot_mapping, kv_cache_dtype) def copy_blocks(key_caches: torch.Tensor, value_caches: torch.Tensor, block_mapping: torch.Tensor) -> None: torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping) def swap_blocks(src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor) -> None: torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping) def convert_fp8(output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8") -> None: torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype) def get_device_attribute(attribute: int, device: int) -> int: return torch.ops._C_cuda_utils.get_device_attribute(attribute, device) def get_max_shared_memory_per_block_device_attribute(device: int) -> int: # ruff: noqa: E501 return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute( device) # custom ar def init_custom_ar(meta: torch.Tensor, rank_data: torch.Tensor, handles: List[str], offsets: List[int], rank: int, full_nvlink: bool) -> int: return torch.ops._C_custom_ar.init_custom_ar(meta, rank_data, handles, offsets, rank, full_nvlink) def should_custom_ar(inp: torch.Tensor, max_size: int, world_size: int, full_nvlink: bool) -> bool: return torch.ops._C_custom_ar.should_custom_ar(inp, max_size, world_size, full_nvlink) def all_reduce_reg(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None: torch.ops._C_custom_ar.all_reduce_reg(fa, inp, out) def all_reduce_unreg(fa: int, inp: torch.Tensor, reg_buffer: torch.Tensor, out: torch.Tensor) -> None: torch.ops._C_custom_ar.all_reduce_unreg(fa, inp, reg_buffer, out) def dispose(fa: int) -> None: torch.ops._C_custom_ar.dispose(fa) def meta_size() -> int: return torch.ops._C_custom_ar.meta_size() def register_buffer(fa: int, t: torch.Tensor, handles: List[str], offsets: List[int]) -> None: return torch.ops._C_custom_ar.register_buffer(fa, t, handles, offsets) def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[str], List[int]]: return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa) def register_graph_buffers(fa: int, handles: List[str], offsets: List[List[int]]) -> None: torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets) # punica def dispatch_bgmv( y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, indicies: torch.Tensor, layer_idx: int, scale: float, ) -> None: torch.ops._punica_C.dispatch_bgmv(y, x, w_t_all, indicies, layer_idx, scale) def dispatch_bgmv_low_level( y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, indicies: torch.Tensor, layer_idx: int, scale: float, h_in: int, h_out: int, y_offset: int, ) -> None: torch.ops._punica_C.dispatch_bgmv_low_level( y, x, w_t_all, indicies, layer_idx, scale, h_in, h_out, y_offset, )