import json import re from typing import Dict, List, Sequence, Union import partial_json_parser from loguru import logger from partial_json_parser.core.options import Allow from aphrodite.common.utils import random_uuid from aphrodite.endpoints.openai.protocol import (DeltaFunctionCall, DeltaMessage, DeltaToolCall, ExtractedToolCallInformation, FunctionCall, ToolCall) from aphrodite.endpoints.openai.tool_parsers.abstract_tool_parser import ( ToolParser) from aphrodite.endpoints.openai.tool_parsers.utils import ( extract_intermediate_diff) from aphrodite.transformers_utils.tokenizer import (AnyTokenizer, MistralTokenizer) class Hermes2ProToolParser(ToolParser): def __init__(self, tokenizer: AnyTokenizer): super().__init__(tokenizer) if isinstance(self.model_tokenizer, MistralTokenizer): logger.error("Detected Mistral tokenizer when using a Hermes model") self.model_tokenizer = self.model_tokenizer.tokenizer self.current_tool_name_sent: bool = False self.prev_tool_call_arr: List[Dict] = [] self.current_tool_id: int = -1 self.streamed_args_for_tool: List[ str ] = [] # map what has been streamed for each tool so far to a list self.tool_call_start_token: str = "" self.tool_call_end_token: str = "" self.tool_call_regex = re.compile( r"(.*?)|(.*)", re.DOTALL ) self.scratch_pad_regex = re.compile( r"(.*?)", re.DOTALL ) if not self.model_tokenizer: raise ValueError( "The model tokenizer must be passed to the ToolParser " "constructor during construction." ) self.tool_call_start_token_id: int = self.model_tokenizer.vocab[ self.tool_call_start_token ] self.tool_call_end_token_id: int = self.model_tokenizer.vocab[ self.tool_call_end_token ] if not self.tool_call_start_token_id or not self.tool_call_end_token_id: raise RuntimeError( "Hermes 2 Pro Tool parser could not locate tool call start/end " "tokens in the tokenizer!" ) def extract_tool_calls( self, model_output: str ) -> ExtractedToolCallInformation: # sanity check; avoid unnecessary processing if self.tool_call_start_token not in model_output: return ExtractedToolCallInformation( tools_called=False, tool_calls=[], content=model_output ) else: try: # there are two possible captures - between tags, or between a # tag and end-of-string so the result of # findall is an array of tuples where one is a function call and # the other is None function_call_tuples = self.tool_call_regex.findall( model_output ) # load the JSON, and then use it to build the Function and # Tool Call raw_function_calls = [ json.loads(match[0] if match[0] else match[1]) for match in function_call_tuples ] tool_calls = [ ToolCall( type="function", function=FunctionCall( name=function_call["name"], # function call args are JSON but as a string arguments=json.dumps(function_call["arguments"]), ), ) for function_call in raw_function_calls ] content = model_output[ : model_output.find(self.tool_call_start_token) ] return ExtractedToolCallInformation( tools_called=True, tool_calls=tool_calls, content=content if content else None, ) except Exception as e: logger.error(f"Error in extracting tool call from response {e}") return ExtractedToolCallInformation( tools_called=False, tool_calls=[], content=model_output ) def extract_tool_calls_streaming( self, previous_text: str, current_text: str, delta_text: str, previous_token_ids: Sequence[int], current_token_ids: Sequence[int], delta_token_ids: Sequence[int], ) -> Union[DeltaMessage, None]: logger.debug(f"delta_text: {delta_text}") logger.debug(f"delta_token_ids: {delta_token_ids}") # check to see if we should be streaming a tool call - is there a if self.tool_call_start_token_id not in current_token_ids: logger.debug("No tool call tokens found!") return DeltaMessage(content=delta_text) try: # figure out where we are in the parsing by counting tool call # start & end tags prev_tool_start_count = previous_token_ids.count( self.tool_call_start_token_id ) prev_tool_end_count = previous_token_ids.count( self.tool_call_end_token_id ) cur_tool_start_count = current_token_ids.count( self.tool_call_start_token_id ) cur_tool_end_count = current_token_ids.count( self.tool_call_end_token_id ) # case: if we're generating text, OR rounding out a tool call if ( cur_tool_start_count == cur_tool_end_count and prev_tool_end_count == cur_tool_end_count ): logger.debug("Generating text content! skipping tool parsing.") if delta_text != self.tool_call_end_token: return DeltaMessage(content=delta_text) # case: if tool open & close tag counts don't match, we're doing # imaginary "else" block here # something with tools with this diff. # flags for partial JSON parting. exported constants from # "Allow" are handled via BIT MASK flags = ( Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR ) # case -- we're starting a new tool call if ( cur_tool_start_count > cur_tool_end_count and cur_tool_start_count > prev_tool_start_count ): if len(delta_token_ids) > 1: tool_call_portion = current_text.split( self.tool_call_start_token )[-1] else: tool_call_portion = None delta = None text_portion = None # set cursors and state appropriately self.current_tool_id += 1 self.current_tool_name_sent = False self.streamed_args_for_tool.append("") logger.debug(f"Starting on a new tool {self.current_tool_id}") # case -- we're updating an existing tool call elif ( cur_tool_start_count > cur_tool_end_count and cur_tool_start_count == prev_tool_start_count ): # get the portion of the text that's the tool call tool_call_portion = current_text.split( self.tool_call_start_token )[-1] text_portion = None # case -- the current tool call is being closed. elif ( cur_tool_start_count == cur_tool_end_count and cur_tool_end_count > prev_tool_end_count ): diff = self.prev_tool_call_arr[self.current_tool_id].get( "arguments" ) if diff: diff = json.dumps(diff).replace( self.streamed_args_for_tool[self.current_tool_id], "" ) logger.debug( f"Finishing tool and found diff that had not " f"been streamed yet: {diff}" ) self.streamed_args_for_tool[self.current_tool_id] += diff return DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall( arguments=diff ).model_dump(exclude_none=True), ) ] ) # case -- otherwise we're just generating text else: text = delta_text.replace(self.tool_call_start_token, "") text = text.replace(self.tool_call_end_token, "") delta = DeltaMessage(tool_calls=[], content=text) return delta try: current_tool_call = ( partial_json_parser.loads(tool_call_portion or "{}", flags) if tool_call_portion else None ) logger.debug(f"Parsed tool call {current_tool_call}") except partial_json_parser.core.exceptions.MalformedJSON: logger.debug("not enough tokens to parse into JSON yet") return None # case - we haven't sent the tool name yet. If it's available, send # it. otherwise, wait until it's available. if not self.current_tool_name_sent: function_name: Union[str, None] = current_tool_call.get("name") if function_name: self.current_tool_name_sent = True return DeltaMessage(tool_calls=[ DeltaToolCall(index=self.current_tool_id, type="function", id=f"chatcmpl-tool-{random_uuid()}", function=DeltaFunctionCall( name=function_name).model_dump( exclude_none=True)) ]) else: return None # case -- otherwise, send the tool call delta # if the tool call portion is None, send the delta as text if tool_call_portion is None: # if there's text but not tool calls, send that - # otherwise None to skip chunk delta = ( DeltaMessage(content=delta_text) if text_portion is not None else None ) return delta # now, the nitty-gritty of tool calls # now we have the portion to parse as tool call. logger.debug( "Trying to parse current tool call with ID " f"{self.current_tool_id}" ) # if we're starting a new tool call, push an empty object in as # a placeholder for the arguments if len(self.prev_tool_call_arr) <= self.current_tool_id: self.prev_tool_call_arr.append({}) # main logic for tool parsing here - compare prev. partially-parsed # JSON to the current partially-parsed JSON prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get( "arguments" ) cur_arguments = current_tool_call.get("arguments") logger.debug(f"diffing old arguments: {prev_arguments}") logger.debug(f"against new ones: {cur_arguments}") # case -- no arguments have been created yet. skip sending a delta. if not cur_arguments and not prev_arguments: logger.debug(f"Skipping text {delta_text} - no arguments") delta = None # case -- prev arguments are defined, but non are now. # probably impossible, but not a fatal error - just keep going elif not cur_arguments and prev_arguments: logger.error( "should be impossible to have arguments reset " "mid-call. skipping streaming anything." ) delta = None # case -- we now have the first info about arguments available from # autocompleting the JSON elif cur_arguments and not prev_arguments: cur_arguments_json = json.dumps(cur_arguments) logger.debug( f"finding {delta_text} in {cur_arguments_json}" ) # get the location where previous args differ from current args_delta_start_loc = cur_arguments_json.index( delta_text ) + len(delta_text) # use that to find the actual delta arguments_delta = cur_arguments_json[:args_delta_start_loc] logger.debug( f"First tokens in arguments received: {arguments_delta}" ) delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall( arguments=arguments_delta ).model_dump(exclude_none=True), ) ] ) self.streamed_args_for_tool[ self.current_tool_id ] += arguments_delta # last case -- we have an update to existing arguments. elif cur_arguments and prev_arguments: cur_args_json = json.dumps(cur_arguments) prev_args_json = json.dumps(prev_arguments) logger.debug(f"Searching for diff between\n{cur_args_json}") logger.debug(f"and\n{prev_args_json}") argument_diff = extract_intermediate_diff( cur_args_json, prev_args_json ) logger.debug(f"got argument diff {argument_diff}") delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall( arguments=argument_diff ).model_dump(exclude_none=True), ) ] ) self.streamed_args_for_tool[ self.current_tool_id ] += argument_diff # handle saving the state for the current tool into # the "prev" list for use in diffing for the next iteration if self.current_tool_id == len(self.prev_tool_call_arr) - 1: self.prev_tool_call_arr[ self.current_tool_id ] = current_tool_call else: self.prev_tool_call_arr.append(current_tool_call) return delta except Exception as e: logger.error(f"Error trying to handle streaming tool call: {e}") return None # do not stream a delta. skip this token ID.