import asyncio import importlib import inspect import json import multiprocessing import os import pickle import re import signal import tempfile from argparse import Namespace from contextlib import asynccontextmanager from distutils.util import strtobool from functools import partial from http import HTTPStatus from typing import AsyncGenerator, AsyncIterator, List, Optional, Set, Tuple import yaml from fastapi import APIRouter, FastAPI, Form, Request, UploadFile from fastapi.exceptions import RequestValidationError from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import (HTMLResponse, JSONResponse, Response, StreamingResponse) from loguru import logger from starlette.datastructures import State from starlette.routing import Mount import aphrodite.common.envs as envs from aphrodite.common.config import ModelConfig from aphrodite.common.outputs import RequestOutput from aphrodite.common.sampling_params import _SAMPLING_EPS, SamplingParams from aphrodite.common.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path, in_windows, random_uuid) from aphrodite.endpoints.logger import RequestLogger from aphrodite.endpoints.openai.args import make_arg_parser from aphrodite.endpoints.openai.protocol import (ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, DetokenizeRequest, DetokenizeResponse, EmbeddingRequest, ErrorResponse, KAIGenerationInputSchema, TokenizeRequest, TokenizeResponse) from aphrodite.endpoints.openai.serving_chat import OpenAIServingChat from aphrodite.endpoints.openai.serving_completions import ( OpenAIServingCompletion) from aphrodite.endpoints.openai.serving_embedding import OpenAIServingEmbedding from aphrodite.endpoints.openai.serving_engine import (LoRAModulePath, PromptAdapterPath) from aphrodite.endpoints.openai.serving_tokenization import ( OpenAIServingTokenization) from aphrodite.engine.args_tools import AsyncEngineArgs from aphrodite.engine.async_aphrodite import AsyncAphrodite from aphrodite.engine.multiprocessing import (APHRODITE_RPC_SUCCESS_STR, RPCShutdownRequest) from aphrodite.engine.multiprocessing.client import MQAphroditeEngineClient from aphrodite.engine.multiprocessing.engine import run_mp_engine from aphrodite.engine.protocol import EngineClient from aphrodite.modeling.model_loader.weight_utils import get_model_config_yaml from aphrodite.server import serve_http from aphrodite.transformers_utils.tokenizer import get_tokenizer from aphrodite.version import __version__ as APHRODITE_VERSION if in_windows(): import winloop as uvloop else: import uvloop TIMEOUT_KEEP_ALIVE = 5 # seconds SERVE_KOBOLD_LITE_UI = strtobool(os.getenv("SERVE_KOBOLD_LITE_UI", "1")) router = APIRouter() kai_api = APIRouter() extra_api = APIRouter() kobold_lite_ui = "" sampler_json = "" gen_cache: dict = {} prometheus_multiproc_dir: tempfile.TemporaryDirectory _running_tasks: Set[asyncio.Task] = set() @asynccontextmanager async def lifespan(app: FastAPI): try: if app.state.log_stats: engine_client: EngineClient = app.state.engine_client async def _force_log(): while True: await asyncio.sleep(10.) await engine_client.do_log_stats() task = asyncio.create_task(_force_log()) _running_tasks.add(task) task.add_done_callback(_running_tasks.remove) else: task = None try: yield finally: if task is not None: task.cancel() finally: # Ensure app state including engine ref is gc'd del app.state @asynccontextmanager async def build_engine_client( args: Namespace) -> AsyncIterator[Optional[EngineClient]]: # Context manager to handle engine_client lifecycle # Ensures everything is shutdown and cleaned up on error/exit engine_args = AsyncEngineArgs.from_cli_args(args) async with build_engine_client_from_engine_args( engine_args, args.disable_frontend_multiprocessing) as engine: yield engine @asynccontextmanager async def build_engine_client_from_engine_args( engine_args: AsyncEngineArgs, disable_frontend_multiprocessing: bool = False, ) -> AsyncIterator[Optional[EngineClient]]: """ Create EngineClient, either: - in-process using the AsyncAphrodite Directly - multiprocess using AsyncAphrodite RPC Returns the Client or None if the creation failed. """ # Fall back # TODO: fill out feature matrix. if (MQAphroditeEngineClient.is_unsupported_config(engine_args) or disable_frontend_multiprocessing): engine_config = engine_args.create_engine_config() uses_ray = getattr(AsyncAphrodite._get_executor_cls(engine_config), "uses_ray", False) build_engine = partial(AsyncAphrodite.from_engine_args, engine_args=engine_args, engine_config=engine_config) if uses_ray: # Must run in main thread with ray for its signal handlers to work engine_client = build_engine() else: engine_client = await asyncio.get_running_loop().run_in_executor( None, build_engine) yield engine_client return # Otherwise, use the multiprocessing AsyncAphrodite. else: if "PROMETHEUS_MULTIPROC_DIR" not in os.environ: # Make TemporaryDirectory for prometheus multiprocessing # Note: global TemporaryDirectory will be automatically # cleaned up upon exit. global prometheus_multiproc_dir prometheus_multiproc_dir = tempfile.TemporaryDirectory() os.environ[ "PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name else: logger.warning( "Found PROMETHEUS_MULTIPROC_DIR was set by user. " "This directory must be wiped between Aphrodite runs or " "you will find inaccurate metrics. Unset the variable " "and Aphrodite will properly handle cleanup.") # Select random path for IPC. ipc_path = get_open_zmq_ipc_path() logger.info( f"Multiprocessing frontend to use {ipc_path} for IPC Path.") # Start RPCServer in separate process (holds the LLMEngine). # the current process might have CUDA context, # so we need to spawn a new process context = multiprocessing.get_context("spawn") engine_process = context.Process(target=run_mp_engine, args=(engine_args, ipc_path)) engine_process.start() logger.info(f"Started engine process with PID {engine_process.pid}") # Build RPCClient, which conforms to EngineClient Protocol. # NOTE: Actually, this is not true yet. We still need to support # embedding models via RPC (see TODO above) engine_config = engine_args.create_engine_config() mp_engine_client = MQAphroditeEngineClient(ipc_path, engine_config) try: while True: try: await mp_engine_client.setup() break except TimeoutError: if not engine_process.is_alive(): logger.error("Engine process died before responding " "to readiness probe") yield None return yield mp_engine_client # type: ignore[misc] finally: # Ensure rpc server process was terminated engine_process.terminate() # Close all open connections to the backend mp_engine_client.close() # Wait for engine process to join engine_process.join(4) if engine_process.exitcode is None: # Kill if taking longer than 5 seconds to stop engine_process.kill() # Lazy import for prometheus multiprocessing. # We need to set PROMETHEUS_MULTIPROC_DIR environment variable # before prometheus_client is imported. # See https://prometheus.github.io/client_python/multiprocess/ from prometheus_client import multiprocess multiprocess.mark_process_dead(engine_process.pid) def mount_metrics(app: FastAPI): # Lazy import for prometheus multiprocessing. # We need to set PROMETHEUS_MULTIPROC_DIR environment variable # before prometheus_client is imported. # See https://prometheus.github.io/client_python/multiprocess/ from prometheus_client import (CollectorRegistry, make_asgi_app, multiprocess) prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None) if prometheus_multiproc_dir_path is not None: logger.info(f"Aphrodite to use {prometheus_multiproc_dir_path} " "as PROMETHEUS_MULTIPROC_DIR") registry = CollectorRegistry() multiprocess.MultiProcessCollector(registry) # Add prometheus asgi middleware to route /metrics requests metrics_route = Mount("/metrics", make_asgi_app(registry=registry)) else: # Add prometheus asgi middleware to route /metrics requests metrics_route = Mount("/metrics", make_asgi_app()) # Workaround for 307 Redirect for /metrics metrics_route.path_regex = re.compile('^/metrics(?P.*)$') app.routes.append(metrics_route) async def _handle_model_switch( raw_request: Request, requested_model: str ) -> Optional[JSONResponse]: """Helper function to handle model switching if needed. Returns error response if something went wrong, None if successful.""" if not raw_request.app.state.args.allow_inline_model_loading: return None if not raw_request.app.state.model_is_loaded: config = get_model_config_yaml(requested_model) request_data = {"model": requested_model} if config: config.pop("model", None) request_data.update(config) load_response = await load_model( raw_request, request=json.dumps(request_data) ) if load_response.status_code != 200: return load_response return None current_model = raw_request.app.state.current_model if current_model == requested_model: return None unload_response = await unload_model(raw_request) if unload_response.status_code != 200: return unload_response config = get_model_config_yaml(requested_model) request_data = {"model": requested_model} if config: config.pop("model", None) request_data.update(config) load_response = await load_model( raw_request, request=json.dumps(request_data) ) if load_response.status_code != 200: return load_response return None def chat(request: Request) -> OpenAIServingChat: return request.app.state.openai_serving_chat def completion(request: Request) -> OpenAIServingCompletion: return request.app.state.openai_serving_completion def tokenization(request: Request) -> OpenAIServingTokenization: return request.app.state.openai_serving_tokenization def embedding(request: Request) -> OpenAIServingEmbedding: return request.app.state.openai_serving_embedding def engine_client(request: Request) -> EngineClient: return request.app.state.engine_client @router.delete("/v1/model/unload") async def unload_model(raw_request: Request): """Unload the model and shut down the engine process.""" if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) client = raw_request.app.state.engine_client if isinstance(client, MQAphroditeEngineClient): try: shutdown_req = RPCShutdownRequest() await client.input_socket.send_multipart( (pickle.dumps(shutdown_req),), copy=False ) response = await client.output_socket.recv_multipart() if pickle.loads(response[0]) != APHRODITE_RPC_SUCCESS_STR: raise RuntimeError("Engine shutdown failed") client.output_loop.cancel() if client.health_loop is not None: client.health_loop.cancel() client.close() raw_request.app.state.engine_client = None raw_request.app.state.openai_serving_chat = None raw_request.app.state.openai_serving_completion = None raw_request.app.state.openai_serving_embedding = None raw_request.app.state.openai_serving_tokenization = None raw_request.app.state.model_is_loaded = False return JSONResponse(content={"status": "success"}) except Exception as e: return JSONResponse( content={ "status": "error", "message": f"Failed to shutdown engine: {str(e)}" }, status_code=500 ) else: return JSONResponse( content={ "status": "error", "message": "Model unloading only supported with multiprocessing" " backend" }, status_code=400 ) @router.post("/v1/model/load") async def load_model( raw_request: Request, config_file: Optional[UploadFile] = None, request: Optional[str] = Form(None) ): """Load a new model after unloading the previous one. Accept either a config file, a JSON request body, or both.""" if raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "A model is already loaded. Please unload it first." }, status_code=400 ) try: parser = FlexibleArgumentParser() parser = make_arg_parser(parser) new_args = parser.parse_args([]) original_args = api_server_args essential_params = [ 'host', 'port', 'api_keys', 'admin_key', 'disable_frontend_multiprocessing', 'root_path', 'ssl_keyfile', 'ssl_certfile' ] for param in essential_params: if hasattr(original_args, param): setattr(new_args, param, getattr(original_args, param)) if config_file: yaml_content = await config_file.read() config_args = yaml.safe_load(yaml_content) if config_args: for key, value in config_args.items(): if hasattr(new_args, key): setattr(new_args, key, value) json_args = None if request: try: json_args = json.loads(request) except json.JSONDecodeError: return JSONResponse( content={ "status": "error", "message": "Invalid JSON in request form field." }, status_code=400 ) else: try: json_args = await raw_request.json() except Exception: if not config_file: return JSONResponse( content={ "status": "error", "message": "Must provide either config_file or " "valid JSON request body." }, status_code=400 ) if json_args: for key, value in json_args.items(): if hasattr(new_args, key): setattr(new_args, key, value) if not hasattr(new_args, 'model') or not new_args.model: return JSONResponse( content={ "status": "error", "message": "No model specified in config or request body." }, status_code=400 ) engine_args = AsyncEngineArgs.from_cli_args(new_args) if (MQAphroditeEngineClient.is_unsupported_config(engine_args) or new_args.disable_frontend_multiprocessing): return JSONResponse( content={ "status": "error", "message": "Model loading only supported with " "multiprocessing backend." }, status_code=400 ) ipc_path = get_open_zmq_ipc_path() context = multiprocessing.get_context("spawn") engine_process = context.Process( target=run_mp_engine, args=(engine_args, ipc_path) ) engine_process.start() engine_config = engine_args.create_engine_config() engine_client = MQAphroditeEngineClient(ipc_path, engine_config) try: while True: try: await engine_client.setup() break except TimeoutError: if not engine_process.is_alive(): return JSONResponse( content={ "status": "error", "message": "Engine process died before " "responding to readiness probe." }, status_code=500 ) model_config = await engine_client.get_model_config() init_app_state( engine_client, model_config, raw_request.app.state, new_args) raw_request.app.state.model_is_loaded = True raw_request.app.state.current_model = new_args.model return JSONResponse(content={"status": "success"}) except Exception as e: engine_process.terminate() engine_client.close() raise e except Exception as e: return JSONResponse( content={ "status": "error", "message": f"Failed to load model: {str(e)}" }, status_code=500 ) @router.get("/health") async def health(raw_request: Request) -> Response: """Health check.""" await engine_client(raw_request).check_health() return Response(status_code=200) @router.post("/v1/tokenize") async def tokenize(request: TokenizeRequest, raw_request: Request): if hasattr(request, "model"): error_response = await _handle_model_switch(raw_request, request.model) if error_response is not None: return error_response if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) generator = await tokenization(raw_request).create_tokenize(request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) else: assert isinstance(generator, TokenizeResponse) return JSONResponse(content=generator.model_dump()) @router.post("/v1/detokenize") async def detokenize(request: DetokenizeRequest, raw_request: Request): if hasattr(request, "model"): error_response = await _handle_model_switch( raw_request, request.model) if error_response is not None: return error_response if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) generator = await tokenization(raw_request).create_detokenize(request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) else: assert isinstance(generator, DetokenizeResponse) return JSONResponse(content=generator.model_dump()) @router.get("/v1/models") async def show_available_models(raw_request: Request): if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) models = await completion(raw_request).show_available_models() return JSONResponse(content=models.model_dump()) @router.get("/version") async def show_version(): ver = {"version": APHRODITE_VERSION} return JSONResponse(content=ver) @router.get("/.well-known/serviceinfo") async def serviceinfo(): """Return service information including version, API endpoints, and documentation URLs.""" return JSONResponse(content={ "version": 0.2, "software": { "name": "Aphrodite Engine", "version": APHRODITE_VERSION, "repository": "https://github.com/PygmalionAI/aphrodite-engine", "homepage": "https://aphrodite.pygmalion.chat", "logo": "https://pygmalion.chat/icons/favicon.ico", }, "api": { "openai": { "name": "OpenAI API", "rel_url": "/v1", "documentation": "/redoc", "version": 1, }, "koboldai": { "name": "KoboldAI API", "rel_url": "/api", "documentation": "/redoc", "version": 1, } } }) @router.post("/v1/chat/completions") async def create_chat_completion(request: ChatCompletionRequest, raw_request: Request): if hasattr(request, "model"): error_response = await _handle_model_switch(raw_request, request.model) if error_response is not None: return error_response if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) generator = await chat(raw_request).create_chat_completion( request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) if request.stream: return StreamingResponse(content=generator, media_type="text/event-stream") else: assert isinstance(generator, ChatCompletionResponse) return JSONResponse(content=generator.model_dump()) @router.post("/v1/completions") async def create_completion(request: CompletionRequest, raw_request: Request): if hasattr(request, "model"): error_response = await _handle_model_switch(raw_request, request.model) if error_response is not None: return error_response if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) generator = await completion(raw_request).create_completion( request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) if request.stream: return StreamingResponse(content=generator, media_type="text/event-stream") else: return JSONResponse(content=generator.model_dump()) @router.post("/v1/embeddings") async def create_embedding(request: EmbeddingRequest, raw_request: Request): if hasattr(request, "model"): error_response = await _handle_model_switch(raw_request, request.model) if error_response is not None: return error_response if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) generator = await embedding(raw_request).create_embedding( request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) else: return JSONResponse(content=generator.model_dump()) @router.post("/v1/lora/load") async def load_lora(lora: LoRAModulePath, raw_request: Request): if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) completion(raw_request).add_lora(lora) if args.enable_lora is False: logger.error("LoRA is not enabled in the engine. " "Please start the server with the " "--enable-lora flag!") return JSONResponse(content={"status": "success"}) @router.delete("/v1/lora/unload") async def unload_lora(lora_name: str, raw_request: Request): if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) completion(raw_request).remove_lora(lora_name) return JSONResponse(content={"status": "success"}) @router.post("/v1/soft_prompt/load") async def load_soft_prompt(soft_prompt: PromptAdapterPath, raw_request: Request): if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) completion(raw_request).add_prompt_adapter(soft_prompt) if args.enable_prompt_adapter is False: logger.error("Prompt Adapter is not enabled in the engine. " "Please start the server with the " "--enable-prompt-adapter flag!") return JSONResponse(content={"status": "success"}) @router.delete("/v1/soft_prompt/unload") async def unload_soft_prompt(soft_prompt_name: str, raw_request: Request): if not raw_request.app.state.model_is_loaded: return JSONResponse( content={ "status": "error", "message": "No model loaded." }, status_code=500 ) completion(raw_request).remove_prompt_adapter(soft_prompt_name) return JSONResponse(content={"status": "success"}) # ============ KoboldAI API ============ # badwordsids: List[int] = [] def _set_badwords(tokenizer, hf_config): # pylint: disable=redefined-outer-name # pylint: disable=global-variable-undefined global badwordsids if hf_config.bad_words_ids is not None: badwordsids = hf_config.bad_words_ids return badwordsids = [ v for k, v in tokenizer.get_vocab().items() if any(c in str(k) for c in "[]") ] if tokenizer.pad_token_id in badwordsids: badwordsids.remove(tokenizer.pad_token_id) badwordsids.append(tokenizer.eos_token_id) def prepare_engine_payload( kai_payload: KAIGenerationInputSchema ) -> Tuple[SamplingParams, List[int]]: """Create SamplingParams and truncated input tokens for AsyncEngine""" if not kai_payload.genkey: kai_payload.genkey = f"kai-{random_uuid()}" kai_payload.top_k = kai_payload.top_k if kai_payload.top_k != 0.0 else -1 kai_payload.tfs = max(_SAMPLING_EPS, kai_payload.tfs) if kai_payload.temperature < _SAMPLING_EPS: kai_payload.n = 1 kai_payload.top_p = 1.0 kai_payload.top_k = -1 sampling_params = SamplingParams( n=kai_payload.n, best_of=kai_payload.n, repetition_penalty=kai_payload.rep_pen, temperature=kai_payload.temperature, smoothing_factor=kai_payload.smoothing_factor, smoothing_curve=kai_payload.smoothing_curve, tfs=kai_payload.tfs, top_p=kai_payload.top_p, top_k=kai_payload.top_k, top_a=kai_payload.top_a, min_p=kai_payload.min_p, typical_p=kai_payload.typical, eta_cutoff=kai_payload.eta_cutoff, epsilon_cutoff=kai_payload.eps_cutoff, stop=kai_payload.stop_sequence, include_stop_str_in_output=kai_payload.include_stop_str_in_output, custom_token_bans=badwordsids if kai_payload.use_default_badwordsids else [], max_tokens=kai_payload.max_length, seed=kai_payload.sampler_seed, xtc_probability=kai_payload.xtc_probability, xtc_threshold=kai_payload.xtc_threshold, ) max_input_tokens = max( 1, kai_payload.max_context_length - kai_payload.max_length) input_tokens = tokenizer(kai_payload.prompt).input_ids[-max_input_tokens:] return sampling_params, input_tokens @kai_api.post("/generate") async def generate(kai_payload: KAIGenerationInputSchema, raw_request: Request) -> JSONResponse: sampling_params, input_tokens = prepare_engine_payload(kai_payload) result_generator = engine_client(raw_request).generate( { "prompt": kai_payload.prompt, "prompt_token_ids": input_tokens, }, sampling_params, kai_payload.genkey, ) final_res: RequestOutput = None previous_output = "" async for res in result_generator: final_res = res new_chunk = res.outputs[0].text[len(previous_output):] previous_output += new_chunk gen_cache[kai_payload.genkey] = previous_output assert final_res is not None del gen_cache[kai_payload.genkey] return JSONResponse( {"results": [{ "text": output.text } for output in final_res.outputs]}) @extra_api.post("/generate/stream") async def generate_stream( kai_payload: KAIGenerationInputSchema, raw_request: Request) -> StreamingResponse: sampling_params, input_tokens = prepare_engine_payload(kai_payload) results_generator = engine_client(raw_request).generate( { "prompt": kai_payload.prompt, "prompt_token_ids": input_tokens, }, sampling_params, kai_payload.genkey, ) async def stream_kobold() -> AsyncGenerator[bytes, None]: previous_output = "" async for res in results_generator: new_chunk = res.outputs[0].text[len(previous_output):] previous_output += new_chunk yield b"event: message\n" yield f"data: {json.dumps({'token': new_chunk})}\n\n".encode() return StreamingResponse(stream_kobold(), headers={ "Cache-Control": "no-cache", "Connection": "keep-alive", }, media_type="text/event-stream") @extra_api.post("/generate/check") @extra_api.get("/generate/check") async def check_generation(request: Request): text = "" try: request_dict = await request.json() if "genkey" in request_dict and request_dict["genkey"] in gen_cache: text = gen_cache[request_dict["genkey"]] except json.JSONDecodeError: pass return JSONResponse({"results": [{"text": text}]}) @extra_api.post("/abort") async def abort_generation(raw_request: Request): try: request_dict = await raw_request.json() if "genkey" in request_dict: await engine_client(raw_request).abort(request_dict["genkey"]) except json.JSONDecodeError: pass return JSONResponse({}) @extra_api.post("/tokencount") async def count_tokens(request: TokenizeRequest, raw_request: Request): """Tokenize string and return token count""" generator = await tokenization(raw_request).create_tokenize(request) return JSONResponse({"value": generator.model_dump()["tokens"]}) @kai_api.get("/info/version") async def get_version(): """Impersonate KAI""" return JSONResponse({"result": "1.2.4"}) @kai_api.get("/model") async def get_model(): return JSONResponse({"result": f"aphrodite/{served_model_names[0]}"}) @kai_api.get("/config/soft_prompts_list") async def get_available_softprompts(): """Stub for compatibility""" return JSONResponse({"values": []}) @kai_api.get("/config/soft_prompt") async def get_current_softprompt(): """Stub for compatibility""" return JSONResponse({"value": ""}) @kai_api.put("/config/soft_prompt") async def set_current_softprompt(): """Stub for compatibility""" return JSONResponse({}) @kai_api.get("/config/max_length") async def get_max_length() -> JSONResponse: max_length = args.max_length return JSONResponse({"value": max_length}) @kai_api.get("/config/max_context_length") @extra_api.get("/true_max_context_length") async def get_max_context_length() -> JSONResponse: max_context_length = args.max_model_len return JSONResponse({"value": max_context_length}) @extra_api.get("/preloadstory") async def get_preloaded_story() -> JSONResponse: """Stub for compatibility""" return JSONResponse({}) @extra_api.get("/version") async def get_extra_version(): """Impersonate KoboldCpp""" return JSONResponse({"result": "KoboldCpp", "version": "1.63"}) @router.get("/") async def get_kobold_lite_ui(): """Serves a cached copy of the Kobold Lite UI, loading it from disk on demand if needed. Can be disabled with SERVE_KOBOLD_LITE_UI=0.""" if not SERVE_KOBOLD_LITE_UI: return JSONResponse(content={"error": "Kobold Lite UI is disabled"}, status_code=404) global kobold_lite_ui if kobold_lite_ui == "": scriptpath = os.path.dirname(os.path.abspath(__file__)) klitepath = os.path.join(scriptpath, "../kobold/klite.embd") klitepath = os.path.normpath(klitepath) # Normalize the path if os.path.exists(klitepath): with open(klitepath, "r", encoding="utf-8") as f: kobold_lite_ui = f.read() else: logger.error("Kobold Lite UI not found at " + klitepath) return HTMLResponse(content=kobold_lite_ui) # ============ KoboldAI API ============ # def build_app(args: Namespace) -> FastAPI: app = FastAPI(lifespan=lifespan) app.include_router(router) app.root_path = args.root_path app.state.args = args app.state.model_is_loaded = False if args.launch_kobold_api: logger.warning("Kobold API is now enabled by default. " "This flag will be removed in the future.") app.include_router(kai_api, prefix="/api/v1") app.include_router(kai_api, prefix="/api/latest", include_in_schema=False) app.include_router(extra_api, prefix="/api/extra") mount_metrics(app) app.add_middleware( CORSMiddleware, allow_origins=args.allowed_origins, allow_credentials=args.allow_credentials, allow_methods=args.allowed_methods, allow_headers=args.allowed_headers, ) @app.exception_handler(RequestValidationError) async def validation_exception_handler(_, exc): chat = app.state.openai_serving_chat err = chat.create_error_response(message=str(exc)) return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST) if token := envs.APHRODITE_API_KEY or args.api_keys: admin_key = os.environ.get("APHRODITE_ADMIN_KEY") or args.admin_key if admin_key is None: logger.warning("Admin key not provided. Admin operations will " "be disabled.") @app.middleware("http") async def authentication(request: Request, call_next): if not request.url.path.startswith(("/v1", "/api")): return await call_next(request) # Browsers may send OPTIONS requests to check CORS headers # before sending the actual request. We should allow these # requests to pass through without authentication. # See https://github.com/PygmalionAI/aphrodite-engine/issues/434 if request.method == "OPTIONS": return await call_next(request) auth_header = request.headers.get("Authorization") api_key_header = request.headers.get("x-api-key") if request.url.path.startswith( ("/v1/lora", "/v1/soft_prompt", "/v1/model")): if admin_key is not None and ( api_key_header == admin_key or auth_header == "Bearer " + admin_key ): return await call_next(request) return JSONResponse(content={"error": "Unauthorized"}, status_code=401) if (auth_header == f"Bearer {token}" or api_key_header == token or (admin_key is not None and (api_key_header == admin_key or auth_header == f"Bearer {admin_key}"))): return await call_next(request) return JSONResponse( content={"error": "Unauthorized"}, status_code=401) for middleware in args.middleware: module_path, object_name = middleware.rsplit(".", 1) imported = getattr(importlib.import_module(module_path), object_name) if inspect.isclass(imported): app.add_middleware(imported) elif inspect.iscoroutinefunction(imported): app.middleware("http")(imported) else: raise ValueError(f"Invalid middleware {middleware}. " f"Must be a function or a class.") return app def init_app_state( engine_client: EngineClient, model_config: ModelConfig, state: State, args: Namespace, ) -> None: global api_server_args api_server_args = args logger.debug(f"args: {args}") global served_model_names if args.served_model_name is not None: served_model_names = args.served_model_name else: served_model_names = [args.model] if args.uvloop: uvloop.install() global tokenizer if args.disable_log_requests: request_logger = None else: request_logger = RequestLogger(max_log_len=args.max_log_len) state.engine_client = engine_client state.log_stats = not args.disable_log_stats state.current_model = args.model state.openai_serving_chat = OpenAIServingChat( engine_client, model_config, served_model_names, args.response_role, lora_modules=args.lora_modules, prompt_adapters=args.prompt_adapters, request_logger=request_logger, chat_template=args.chat_template, return_tokens_as_token_ids=args.return_tokens_as_token_ids, enable_auto_tools=args.enable_auto_tool_choice, tool_parser=args.tool_call_parser ) state.openai_serving_completion = OpenAIServingCompletion( engine_client, model_config, served_model_names, lora_modules=args.lora_modules, prompt_adapters=args.prompt_adapters, request_logger=request_logger, return_tokens_as_token_ids=args.return_tokens_as_token_ids, ) state.openai_serving_embedding = OpenAIServingEmbedding( engine_client, model_config, served_model_names, request_logger=request_logger, ) state.openai_serving_tokenization = OpenAIServingTokenization( engine_client, model_config, served_model_names, lora_modules=args.lora_modules, request_logger=request_logger, chat_template=args.chat_template, ) tokenizer = get_tokenizer( tokenizer_name=args.tokenizer if args.tokenizer else args.model, tokenizer_mode=args.tokenizer_mode, trust_remote_code=args.trust_remote_code, revision=args.revision, ) if args.launch_kobold_api: _set_badwords(tokenizer, model_config.hf_config) async def run_server(args, **uvicorn_kwargs) -> None: def signal_handler(*_) -> None: # Interrupt server on sigterm while initializing raise KeyboardInterrupt("terminated") signal.signal(signal.SIGTERM, signal_handler) async with build_engine_client(args) as engine_client: # If None, creation of the client failed and we exit. if engine_client is None: return app = build_app(args) model_config = await engine_client.get_model_config() init_app_state(engine_client, model_config, app.state, args) protocol = "https" if args.ssl_certfile else "http" root_path = args.root_path.rstrip("/") if args.root_path else "" host_name = args.host if args.host else "localhost" port_str = str(args.port) app.state.model_is_loaded = True if SERVE_KOBOLD_LITE_UI: ui_url = f"{protocol}://{host_name}:{port_str}{root_path}/" logger.info(f"Kobold Lite UI: {ui_url}") logger.info(f"Documentation: {protocol}://{host_name}:{port_str}{root_path}/redoc") # noqa: E501 logger.info(f"Completions API: {protocol}://{host_name}:{port_str}{root_path}/v1/completions") # noqa: E501 logger.info(f"Chat API: {protocol}://{host_name}:{port_str}{root_path}/v1/chat/completions") # noqa: E501 logger.info(f"Embeddings API: {protocol}://{host_name}:{port_str}{root_path}/v1/embeddings") # noqa: E501 logger.info(f"Tokenization API: {protocol}://{host_name}:{port_str}{root_path}/v1/tokenize") # noqa: E501 shutdown_task = await serve_http( app, host=args.host, port=args.port, log_level=args.uvicorn_log_level, timeout_keep_alive=TIMEOUT_KEEP_ALIVE, ssl_keyfile=args.ssl_keyfile, ssl_certfile=args.ssl_certfile, ssl_ca_certs=args.ssl_ca_certs, ssl_cert_reqs=args.ssl_cert_reqs, **uvicorn_kwargs, ) # NB: Await server shutdown only after the backend context is exited await shutdown_task if __name__ == "__main__": # NOTE: # This section should be in sync with aphrodite/endpoints/cli.py # for CLI entrypoints. parser = FlexibleArgumentParser( description="Aphrodite OpenAI-Compatible RESTful API Server") parser = make_arg_parser(parser) args = parser.parse_args() uvloop.run(run_server(args))