|
@@ -0,0 +1,580 @@
|
|
|
+import datetime
|
|
|
+import locale
|
|
|
+import re
|
|
|
+import subprocess
|
|
|
+import sys
|
|
|
+import os
|
|
|
+from collections import namedtuple
|
|
|
+
|
|
|
+
|
|
|
+try:
|
|
|
+ import torch
|
|
|
+ TORCH_AVAILABLE = True
|
|
|
+except (ImportError, NameError, AttributeError, OSError):
|
|
|
+ TORCH_AVAILABLE = False
|
|
|
+
|
|
|
+# System Environment Information
|
|
|
+SystemEnv = namedtuple('SystemEnv', [
|
|
|
+ 'torch_version',
|
|
|
+ 'is_debug_build',
|
|
|
+ 'cuda_compiled_version',
|
|
|
+ 'gcc_version',
|
|
|
+ 'clang_version',
|
|
|
+ 'cmake_version',
|
|
|
+ 'os',
|
|
|
+ 'libc_version',
|
|
|
+ 'python_version',
|
|
|
+ 'python_platform',
|
|
|
+ 'is_cuda_available',
|
|
|
+ 'cuda_runtime_version',
|
|
|
+ 'cuda_module_loading',
|
|
|
+ 'nvidia_driver_version',
|
|
|
+ 'nvidia_gpu_models',
|
|
|
+ 'cudnn_version',
|
|
|
+ 'pip_version', # 'pip' or 'pip3'
|
|
|
+ 'pip_packages',
|
|
|
+ 'conda_packages',
|
|
|
+ 'hip_compiled_version',
|
|
|
+ 'hip_runtime_version',
|
|
|
+ 'miopen_runtime_version',
|
|
|
+ 'caching_allocator_config',
|
|
|
+ 'is_xnnpack_available',
|
|
|
+ 'cpu_info',
|
|
|
+ 'rocm_version',
|
|
|
+ 'aphrodite_version',
|
|
|
+ 'aphrodite_build_flags',
|
|
|
+])
|
|
|
+
|
|
|
+DEFAULT_CONDA_PATTERNS = {
|
|
|
+ "torch",
|
|
|
+ "numpy",
|
|
|
+ "cudatoolkit",
|
|
|
+ "soumith",
|
|
|
+ "mkl",
|
|
|
+ "magma",
|
|
|
+ "triton",
|
|
|
+ "optree",
|
|
|
+}
|
|
|
+
|
|
|
+DEFAULT_PIP_PATTERNS = {
|
|
|
+ "torch",
|
|
|
+ "numpy",
|
|
|
+ "mypy",
|
|
|
+ "flake8",
|
|
|
+ "triton",
|
|
|
+ "optree",
|
|
|
+ "onnx",
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+def run(command):
|
|
|
+ """Return (return-code, stdout, stderr)."""
|
|
|
+ shell = True if type(command) is str else False
|
|
|
+ p = subprocess.Popen(command, stdout=subprocess.PIPE,
|
|
|
+ stderr=subprocess.PIPE, shell=shell)
|
|
|
+ raw_output, raw_err = p.communicate()
|
|
|
+ rc = p.returncode
|
|
|
+ if get_platform() == 'win32':
|
|
|
+ enc = 'oem'
|
|
|
+ else:
|
|
|
+ enc = locale.getpreferredencoding()
|
|
|
+ output = raw_output.decode(enc)
|
|
|
+ err = raw_err.decode(enc)
|
|
|
+ return rc, output.strip(), err.strip()
|
|
|
+
|
|
|
+
|
|
|
+def run_and_read_all(run_lambda, command):
|
|
|
+ """Run command using run_lambda; reads and returns entire output if rc is 0."""
|
|
|
+ rc, out, _ = run_lambda(command)
|
|
|
+ if rc != 0:
|
|
|
+ return None
|
|
|
+ return out
|
|
|
+
|
|
|
+
|
|
|
+def run_and_parse_first_match(run_lambda, command, regex):
|
|
|
+ """Run command using run_lambda, returns the first regex match if it exists."""
|
|
|
+ rc, out, _ = run_lambda(command)
|
|
|
+ if rc != 0:
|
|
|
+ return None
|
|
|
+ match = re.search(regex, out)
|
|
|
+ if match is None:
|
|
|
+ return None
|
|
|
+ return match.group(1)
|
|
|
+
|
|
|
+def run_and_return_first_line(run_lambda, command):
|
|
|
+ """Run command using run_lambda and returns first line if output is not empty."""
|
|
|
+ rc, out, _ = run_lambda(command)
|
|
|
+ if rc != 0:
|
|
|
+ return None
|
|
|
+ return out.split('\n')[0]
|
|
|
+
|
|
|
+
|
|
|
+def get_conda_packages(run_lambda, patterns=None):
|
|
|
+ if patterns is None:
|
|
|
+ patterns = DEFAULT_CONDA_PATTERNS
|
|
|
+ conda = os.environ.get('CONDA_EXE', 'conda')
|
|
|
+ out = run_and_read_all(run_lambda, "{} list".format(conda))
|
|
|
+ if out is None:
|
|
|
+ return out
|
|
|
+
|
|
|
+ return "\n".join(
|
|
|
+ line
|
|
|
+ for line in out.splitlines()
|
|
|
+ if not line.startswith("#")
|
|
|
+ and any(name in line for name in patterns)
|
|
|
+ )
|
|
|
+
|
|
|
+def get_gcc_version(run_lambda):
|
|
|
+ return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
|
|
|
+
|
|
|
+def get_clang_version(run_lambda):
|
|
|
+ return run_and_parse_first_match(run_lambda, 'clang --version', r'clang version (.*)')
|
|
|
+
|
|
|
+
|
|
|
+def get_cmake_version(run_lambda):
|
|
|
+ return run_and_parse_first_match(run_lambda, 'cmake --version', r'cmake (.*)')
|
|
|
+
|
|
|
+
|
|
|
+def get_nvidia_driver_version(run_lambda):
|
|
|
+ if get_platform() == 'darwin':
|
|
|
+ cmd = 'kextstat | grep -i cuda'
|
|
|
+ return run_and_parse_first_match(run_lambda, cmd,
|
|
|
+ r'com[.]nvidia[.]CUDA [(](.*?)[)]')
|
|
|
+ smi = get_nvidia_smi()
|
|
|
+ return run_and_parse_first_match(run_lambda, smi, r'Driver Version: (.*?) ')
|
|
|
+
|
|
|
+
|
|
|
+def get_gpu_info(run_lambda):
|
|
|
+ if get_platform() == 'darwin' or (TORCH_AVAILABLE and hasattr(torch.version, 'hip') and torch.version.hip is not None):
|
|
|
+ if TORCH_AVAILABLE and torch.cuda.is_available():
|
|
|
+ if torch.version.hip is not None:
|
|
|
+ prop = torch.cuda.get_device_properties(0)
|
|
|
+ if hasattr(prop, "gcnArchName"):
|
|
|
+ gcnArch = " ({})".format(prop.gcnArchName)
|
|
|
+ else:
|
|
|
+ gcnArch = "NoGCNArchNameOnOldPyTorch"
|
|
|
+ else:
|
|
|
+ gcnArch = ""
|
|
|
+ return torch.cuda.get_device_name(None) + gcnArch
|
|
|
+ return None
|
|
|
+ smi = get_nvidia_smi()
|
|
|
+ uuid_regex = re.compile(r' \(UUID: .+?\)')
|
|
|
+ rc, out, _ = run_lambda(smi + ' -L')
|
|
|
+ if rc != 0:
|
|
|
+ return None
|
|
|
+ # Anonymize GPUs by removing their UUID
|
|
|
+ return re.sub(uuid_regex, '', out)
|
|
|
+
|
|
|
+
|
|
|
+def get_running_cuda_version(run_lambda):
|
|
|
+ return run_and_parse_first_match(run_lambda, 'nvcc --version', r'release .+ V(.*)')
|
|
|
+
|
|
|
+
|
|
|
+def get_cudnn_version(run_lambda):
|
|
|
+ """Return a list of libcudnn.so; it's hard to tell which one is being used."""
|
|
|
+ if get_platform() == 'win32':
|
|
|
+ system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
|
|
+ cuda_path = os.environ.get('CUDA_PATH', "%CUDA_PATH%")
|
|
|
+ where_cmd = os.path.join(system_root, 'System32', 'where')
|
|
|
+ cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
|
|
|
+ elif get_platform() == 'darwin':
|
|
|
+ # CUDA libraries and drivers can be found in /usr/local/cuda/. See
|
|
|
+ # https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
|
|
|
+ # https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
|
|
|
+ # Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
|
|
|
+ cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*'
|
|
|
+ else:
|
|
|
+ cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
|
|
|
+ rc, out, _ = run_lambda(cudnn_cmd)
|
|
|
+ # find will return 1 if there are permission errors or if not found
|
|
|
+ if len(out) == 0 or (rc != 1 and rc != 0):
|
|
|
+ l = os.environ.get('CUDNN_LIBRARY')
|
|
|
+ if l is not None and os.path.isfile(l):
|
|
|
+ return os.path.realpath(l)
|
|
|
+ return None
|
|
|
+ files_set = set()
|
|
|
+ for fn in out.split('\n'):
|
|
|
+ fn = os.path.realpath(fn) # eliminate symbolic links
|
|
|
+ if os.path.isfile(fn):
|
|
|
+ files_set.add(fn)
|
|
|
+ if not files_set:
|
|
|
+ return None
|
|
|
+ # Alphabetize the result because the order is non-deterministic otherwise
|
|
|
+ files = sorted(files_set)
|
|
|
+ if len(files) == 1:
|
|
|
+ return files[0]
|
|
|
+ result = '\n'.join(files)
|
|
|
+ return 'Probably one of the following:\n{}'.format(result)
|
|
|
+
|
|
|
+
|
|
|
+def get_nvidia_smi():
|
|
|
+ # Note: nvidia-smi is currently available only on Windows and Linux
|
|
|
+ smi = 'nvidia-smi'
|
|
|
+ if get_platform() == 'win32':
|
|
|
+ system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
|
|
+ program_files_root = os.environ.get('PROGRAMFILES', 'C:\\Program Files')
|
|
|
+ legacy_path = os.path.join(program_files_root, 'NVIDIA Corporation', 'NVSMI', smi)
|
|
|
+ new_path = os.path.join(system_root, 'System32', smi)
|
|
|
+ smis = [new_path, legacy_path]
|
|
|
+ for candidate_smi in smis:
|
|
|
+ if os.path.exists(candidate_smi):
|
|
|
+ smi = '"{}"'.format(candidate_smi)
|
|
|
+ break
|
|
|
+ return smi
|
|
|
+
|
|
|
+
|
|
|
+def get_rocm_version(run_lambda):
|
|
|
+ """Returns the ROCm version if available, otherwise 'N/A'."""
|
|
|
+ return run_and_parse_first_match(run_lambda, 'hipcc --version', r'HIP version: (\S+)')
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+def get_aphrodite_version():
|
|
|
+ try:
|
|
|
+ import aphrodite
|
|
|
+ return aphrodite.__version__
|
|
|
+ except ImportError:
|
|
|
+ return 'N/A'
|
|
|
+
|
|
|
+
|
|
|
+def summarize_aphrodite_build_flags():
|
|
|
+ # This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc.
|
|
|
+ return 'CUDA Archs: {}; ROCm: {}'.format(
|
|
|
+ os.environ.get('TORCH_CUDA_ARCH_LIST', 'Not Set'),
|
|
|
+ 'Enabled' if os.environ.get('ROCM_HOME') else 'Disabled',
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def get_cpu_info(run_lambda):
|
|
|
+ rc, out, err = 0, '', ''
|
|
|
+ if get_platform() == 'linux':
|
|
|
+ rc, out, err = run_lambda('lscpu')
|
|
|
+ elif get_platform() == 'win32':
|
|
|
+ rc, out, err = run_lambda('wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
|
|
|
+ CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE')
|
|
|
+ elif get_platform() == 'darwin':
|
|
|
+ rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
|
|
|
+ cpu_info = 'None'
|
|
|
+ if rc == 0:
|
|
|
+ cpu_info = out
|
|
|
+ else:
|
|
|
+ cpu_info = err
|
|
|
+ return cpu_info
|
|
|
+
|
|
|
+
|
|
|
+def get_platform():
|
|
|
+ if sys.platform.startswith('linux'):
|
|
|
+ return 'linux'
|
|
|
+ elif sys.platform.startswith('win32'):
|
|
|
+ return 'win32'
|
|
|
+ elif sys.platform.startswith('cygwin'):
|
|
|
+ return 'cygwin'
|
|
|
+ elif sys.platform.startswith('darwin'):
|
|
|
+ return 'darwin'
|
|
|
+ else:
|
|
|
+ return sys.platform
|
|
|
+
|
|
|
+
|
|
|
+def get_mac_version(run_lambda):
|
|
|
+ return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion', r'(.*)')
|
|
|
+
|
|
|
+
|
|
|
+def get_windows_version(run_lambda):
|
|
|
+ system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
|
|
+ wmic_cmd = os.path.join(system_root, 'System32', 'Wbem', 'wmic')
|
|
|
+ findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
|
|
|
+ return run_and_read_all(run_lambda, '{} os get Caption | {} /v Caption'.format(wmic_cmd, findstr_cmd))
|
|
|
+
|
|
|
+
|
|
|
+def get_lsb_version(run_lambda):
|
|
|
+ return run_and_parse_first_match(run_lambda, 'lsb_release -a', r'Description:\t(.*)')
|
|
|
+
|
|
|
+
|
|
|
+def check_release_file(run_lambda):
|
|
|
+ return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
|
|
|
+ r'PRETTY_NAME="(.*)"')
|
|
|
+
|
|
|
+
|
|
|
+def get_os(run_lambda):
|
|
|
+ from platform import machine
|
|
|
+ platform = get_platform()
|
|
|
+
|
|
|
+ if platform == 'win32' or platform == 'cygwin':
|
|
|
+ return get_windows_version(run_lambda)
|
|
|
+
|
|
|
+ if platform == 'darwin':
|
|
|
+ version = get_mac_version(run_lambda)
|
|
|
+ if version is None:
|
|
|
+ return None
|
|
|
+ return 'macOS {} ({})'.format(version, machine())
|
|
|
+
|
|
|
+ if platform == 'linux':
|
|
|
+ # Ubuntu/Debian based
|
|
|
+ desc = get_lsb_version(run_lambda)
|
|
|
+ if desc is not None:
|
|
|
+ return '{} ({})'.format(desc, machine())
|
|
|
+
|
|
|
+ # Try reading /etc/*-release
|
|
|
+ desc = check_release_file(run_lambda)
|
|
|
+ if desc is not None:
|
|
|
+ return '{} ({})'.format(desc, machine())
|
|
|
+
|
|
|
+ return '{} ({})'.format(platform, machine())
|
|
|
+
|
|
|
+ # Unknown platform
|
|
|
+ return platform
|
|
|
+
|
|
|
+
|
|
|
+def get_python_platform():
|
|
|
+ import platform
|
|
|
+ return platform.platform()
|
|
|
+
|
|
|
+
|
|
|
+def get_libc_version():
|
|
|
+ import platform
|
|
|
+ if get_platform() != 'linux':
|
|
|
+ return 'N/A'
|
|
|
+ return '-'.join(platform.libc_ver())
|
|
|
+
|
|
|
+
|
|
|
+def get_pip_packages(run_lambda, patterns=None):
|
|
|
+ """Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
|
|
|
+ if patterns is None:
|
|
|
+ patterns = DEFAULT_PIP_PATTERNS
|
|
|
+
|
|
|
+ # People generally have `pip` as `pip` or `pip3`
|
|
|
+ # But here it is invoked as `python -mpip`
|
|
|
+ def run_with_pip(pip):
|
|
|
+ out = run_and_read_all(run_lambda, pip + ["list", "--format=freeze"])
|
|
|
+ return "\n".join(
|
|
|
+ line
|
|
|
+ for line in out.splitlines()
|
|
|
+ if any(name in line for name in patterns)
|
|
|
+ )
|
|
|
+
|
|
|
+ pip_version = 'pip3' if sys.version[0] == '3' else 'pip'
|
|
|
+ out = run_with_pip([sys.executable, '-mpip'])
|
|
|
+
|
|
|
+ return pip_version, out
|
|
|
+
|
|
|
+
|
|
|
+def get_cachingallocator_config():
|
|
|
+ ca_config = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', '')
|
|
|
+ return ca_config
|
|
|
+
|
|
|
+
|
|
|
+def get_cuda_module_loading_config():
|
|
|
+ if TORCH_AVAILABLE and torch.cuda.is_available():
|
|
|
+ torch.cuda.init()
|
|
|
+ config = os.environ.get('CUDA_MODULE_LOADING', '')
|
|
|
+ return config
|
|
|
+ else:
|
|
|
+ return "N/A"
|
|
|
+
|
|
|
+
|
|
|
+def is_xnnpack_available():
|
|
|
+ if TORCH_AVAILABLE:
|
|
|
+ import torch.backends.xnnpack
|
|
|
+ return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
|
|
|
+ else:
|
|
|
+ return "N/A"
|
|
|
+
|
|
|
+def get_env_info():
|
|
|
+ run_lambda = run
|
|
|
+ pip_version, pip_list_output = get_pip_packages(run_lambda)
|
|
|
+
|
|
|
+ if TORCH_AVAILABLE:
|
|
|
+ version_str = torch.__version__
|
|
|
+ debug_mode_str = str(torch.version.debug)
|
|
|
+ cuda_available_str = str(torch.cuda.is_available())
|
|
|
+ cuda_version_str = torch.version.cuda
|
|
|
+ if not hasattr(torch.version, 'hip') or torch.version.hip is None: # cuda version
|
|
|
+ hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
|
|
|
+ else: # HIP version
|
|
|
+ def get_version_or_na(cfg, prefix):
|
|
|
+ _lst = [s.rsplit(None, 1)[-1] for s in cfg if prefix in s]
|
|
|
+ return _lst[0] if _lst else 'N/A'
|
|
|
+
|
|
|
+ cfg = torch._C._show_config().split('\n')
|
|
|
+ hip_runtime_version = get_version_or_na(cfg, 'HIP Runtime')
|
|
|
+ miopen_runtime_version = get_version_or_na(cfg, 'MIOpen')
|
|
|
+ cuda_version_str = 'N/A'
|
|
|
+ hip_compiled_version = torch.version.hip
|
|
|
+ else:
|
|
|
+ version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
|
|
|
+ hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
|
|
|
+
|
|
|
+ sys_version = sys.version.replace("\n", " ")
|
|
|
+
|
|
|
+ conda_packages = get_conda_packages(run_lambda)
|
|
|
+
|
|
|
+ rocm_version = get_rocm_version(run_lambda)
|
|
|
+ aphrodite_version = get_aphrodite_version()
|
|
|
+ aphrodite_build_flags = summarize_aphrodite_build_flags()
|
|
|
+
|
|
|
+ return SystemEnv(
|
|
|
+ torch_version=version_str,
|
|
|
+ is_debug_build=debug_mode_str,
|
|
|
+ python_version='{} ({}-bit runtime)'.format(sys_version, sys.maxsize.bit_length() + 1),
|
|
|
+ python_platform=get_python_platform(),
|
|
|
+ is_cuda_available=cuda_available_str,
|
|
|
+ cuda_compiled_version=cuda_version_str,
|
|
|
+ cuda_runtime_version=get_running_cuda_version(run_lambda),
|
|
|
+ cuda_module_loading=get_cuda_module_loading_config(),
|
|
|
+ nvidia_gpu_models=get_gpu_info(run_lambda),
|
|
|
+ nvidia_driver_version=get_nvidia_driver_version(run_lambda),
|
|
|
+ cudnn_version=get_cudnn_version(run_lambda),
|
|
|
+ hip_compiled_version=hip_compiled_version,
|
|
|
+ hip_runtime_version=hip_runtime_version,
|
|
|
+ miopen_runtime_version=miopen_runtime_version,
|
|
|
+ pip_version=pip_version,
|
|
|
+ pip_packages=pip_list_output,
|
|
|
+ conda_packages=conda_packages,
|
|
|
+ os=get_os(run_lambda),
|
|
|
+ libc_version=get_libc_version(),
|
|
|
+ gcc_version=get_gcc_version(run_lambda),
|
|
|
+ clang_version=get_clang_version(run_lambda),
|
|
|
+ cmake_version=get_cmake_version(run_lambda),
|
|
|
+ caching_allocator_config=get_cachingallocator_config(),
|
|
|
+ is_xnnpack_available=is_xnnpack_available(),
|
|
|
+ cpu_info=get_cpu_info(run_lambda),
|
|
|
+ rocm_version=rocm_version,
|
|
|
+ aphrodite_version=aphrodite_version,
|
|
|
+ aphrodite_build_flags=aphrodite_build_flags,
|
|
|
+ )
|
|
|
+
|
|
|
+env_info_fmt = """
|
|
|
+PyTorch version: {torch_version}
|
|
|
+Is debug build: {is_debug_build}
|
|
|
+CUDA used to build PyTorch: {cuda_compiled_version}
|
|
|
+ROCM used to build PyTorch: {hip_compiled_version}
|
|
|
+OS: {os}
|
|
|
+GCC version: {gcc_version}
|
|
|
+Clang version: {clang_version}
|
|
|
+CMake version: {cmake_version}
|
|
|
+Libc version: {libc_version}
|
|
|
+Python version: {python_version}
|
|
|
+Python platform: {python_platform}
|
|
|
+Is CUDA available: {is_cuda_available}
|
|
|
+CUDA runtime version: {cuda_runtime_version}
|
|
|
+CUDA_MODULE_LOADING set to: {cuda_module_loading}
|
|
|
+GPU models and configuration: {nvidia_gpu_models}
|
|
|
+Nvidia driver version: {nvidia_driver_version}
|
|
|
+cuDNN version: {cudnn_version}
|
|
|
+HIP runtime version: {hip_runtime_version}
|
|
|
+MIOpen runtime version: {miopen_runtime_version}
|
|
|
+Is XNNPACK available: {is_xnnpack_available}
|
|
|
+CPU:
|
|
|
+{cpu_info}
|
|
|
+Versions of relevant libraries:
|
|
|
+{pip_packages}
|
|
|
+{conda_packages}
|
|
|
+""".strip()
|
|
|
+
|
|
|
+env_info_fmt += """
|
|
|
+ROCM Version: {rocm_version}
|
|
|
+Aphrodite Version: {aphrodite_version}
|
|
|
+Aphrodite Build Flags:
|
|
|
+{aphrodite_build_flags}
|
|
|
+""".strip()
|
|
|
+
|
|
|
+
|
|
|
+def pretty_str(envinfo):
|
|
|
+ def replace_nones(dct, replacement='Could not collect '):
|
|
|
+ for key in dct.keys():
|
|
|
+ if dct[key] is not None:
|
|
|
+ continue
|
|
|
+ dct[key] = replacement
|
|
|
+ return dct
|
|
|
+
|
|
|
+ def replace_bools(dct, true='Yes', false='No'):
|
|
|
+ for key in dct.keys():
|
|
|
+ if dct[key] is True:
|
|
|
+ dct[key] = true
|
|
|
+ elif dct[key] is False:
|
|
|
+ dct[key] = false
|
|
|
+ return dct
|
|
|
+
|
|
|
+ def prepend(text, tag='[prepend]'):
|
|
|
+ lines = text.split('\n')
|
|
|
+ updated_lines = [tag + line for line in lines]
|
|
|
+ return '\n'.join(updated_lines)
|
|
|
+
|
|
|
+ def replace_if_empty(text, replacement='No relevant packages '):
|
|
|
+ if text is not None and len(text) == 0:
|
|
|
+ return replacement
|
|
|
+ return text
|
|
|
+
|
|
|
+ def maybe_start_on_next_line(string):
|
|
|
+ # If `string` is multiline, prepend a \n to it.
|
|
|
+ if string is not None and len(string.split('\n')) > 1:
|
|
|
+ return '\n{}\n'.format(string)
|
|
|
+ return string
|
|
|
+
|
|
|
+ mutable_dict = envinfo._asdict()
|
|
|
+
|
|
|
+ # If nvidia_gpu_models is multiline, start on the next line
|
|
|
+ mutable_dict['nvidia_gpu_models'] = \
|
|
|
+ maybe_start_on_next_line(envinfo.nvidia_gpu_models)
|
|
|
+
|
|
|
+ # If the machine doesn't have CUDA, report some fields as 'No CUDA'
|
|
|
+ dynamic_cuda_fields = [
|
|
|
+ 'cuda_runtime_version',
|
|
|
+ 'nvidia_gpu_models',
|
|
|
+ 'nvidia_driver_version',
|
|
|
+ ]
|
|
|
+ all_cuda_fields = dynamic_cuda_fields + ['cudnn_version']
|
|
|
+ all_dynamic_cuda_fields_missing = all(
|
|
|
+ mutable_dict[field] is None for field in dynamic_cuda_fields)
|
|
|
+ if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing:
|
|
|
+ for field in all_cuda_fields:
|
|
|
+ mutable_dict[field] = 'No CUDA'
|
|
|
+ if envinfo.cuda_compiled_version is None:
|
|
|
+ mutable_dict['cuda_compiled_version'] = 'None'
|
|
|
+
|
|
|
+ # Replace True with Yes, False with No
|
|
|
+ mutable_dict = replace_bools(mutable_dict)
|
|
|
+
|
|
|
+ # Replace all None objects with 'Could not collect'
|
|
|
+ mutable_dict = replace_nones(mutable_dict)
|
|
|
+
|
|
|
+ # If either of these are '', replace with 'No relevant packages'
|
|
|
+ mutable_dict['pip_packages'] = replace_if_empty(mutable_dict['pip_packages'])
|
|
|
+ mutable_dict['conda_packages'] = replace_if_empty(mutable_dict['conda_packages'])
|
|
|
+
|
|
|
+ # Tag conda and pip packages with a prefix
|
|
|
+ # If they were previously None, they'll show up as ie '[conda] Could not collect'
|
|
|
+ if mutable_dict['pip_packages']:
|
|
|
+ mutable_dict['pip_packages'] = prepend(mutable_dict['pip_packages'],
|
|
|
+ '[{}] '.format(envinfo.pip_version))
|
|
|
+ if mutable_dict['conda_packages']:
|
|
|
+ mutable_dict['conda_packages'] = prepend(mutable_dict['conda_packages'],
|
|
|
+ '[conda] ')
|
|
|
+ mutable_dict['cpu_info'] = envinfo.cpu_info
|
|
|
+ return env_info_fmt.format(**mutable_dict)
|
|
|
+
|
|
|
+
|
|
|
+def get_pretty_env_info():
|
|
|
+ return pretty_str(get_env_info())
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+ print("Collecting environment information...")
|
|
|
+ output = get_pretty_env_info()
|
|
|
+ print(output)
|
|
|
+
|
|
|
+ if TORCH_AVAILABLE and hasattr(torch, 'utils') and hasattr(torch.utils, '_crash_handler'):
|
|
|
+ minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
|
|
|
+ if sys.platform == "linux" and os.path.exists(minidump_dir):
|
|
|
+ dumps = [os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)]
|
|
|
+ latest = max(dumps, key=os.path.getctime)
|
|
|
+ ctime = os.path.getctime(latest)
|
|
|
+ creation_time = datetime.datetime.fromtimestamp(ctime).strftime('%Y-%m-%d %H:%M:%S')
|
|
|
+ msg = "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time) + \
|
|
|
+ "if this is related to your bug please include it when you file a report ***"
|
|
|
+ print(msg, file=sys.stderr)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ main()
|