|
@@ -0,0 +1,446 @@
|
|
|
|
+# coding=utf-8
|
|
|
|
+# Adapted from
|
|
|
|
+# https://github.com/huggingface/transformers/blob/a5cc30d72ae2dc19af534e4b35c986cc28db1275/src/transformers/models/falcon/modeling_falcon.py
|
|
|
|
+# Copyright 2023 The PygmalionAI team.
|
|
|
|
+# Copyright 2023 The vLLM team.
|
|
|
|
+# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights
|
|
|
|
+# reserved.
|
|
|
|
+#
|
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
|
+# You may obtain a copy of the License at
|
|
|
|
+#
|
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
+#
|
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
|
+# limitations under the License.
|
|
|
|
+"""PyTorch Falcon model."""
|
|
|
|
+
|
|
|
|
+import math
|
|
|
|
+from typing import List, Optional, Tuple, Union
|
|
|
|
+
|
|
|
|
+import torch
|
|
|
|
+from torch import nn
|
|
|
|
+from torch.nn import LayerNorm
|
|
|
|
+from transformers import FalconConfig as HF_FalconConfig
|
|
|
|
+
|
|
|
|
+from aphrodite.modeling.metadata import InputMetadata
|
|
|
|
+from aphrodite.modeling.layers.activation import get_act_fn
|
|
|
|
+from aphrodite.modeling.layers.attention import PagedAttention
|
|
|
|
+from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
|
|
|
|
+ LinearMethodBase,
|
|
|
|
+ QKVParallelLinear,
|
|
|
|
+ RowParallelLinear)
|
|
|
|
+from aphrodite.modeling.layers.rotary_embedding import get_rope
|
|
|
|
+from aphrodite.modeling.layers.sampler import Sampler
|
|
|
|
+from aphrodite.modeling.layers.vocab_parallel_embedding import (
|
|
|
|
+ VocabParallelEmbedding, ParallelLMHead)
|
|
|
|
+from aphrodite.modeling.megatron.communication_op import (
|
|
|
|
+ tensor_model_parallel_all_reduce)
|
|
|
|
+from aphrodite.modeling.megatron.parallel_state import (
|
|
|
|
+ get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
|
|
|
+from aphrodite.modeling.sampling_metadata import SamplingMetadata
|
|
|
|
+from aphrodite.modeling.hf_downloader import (default_weight_loader,
|
|
|
|
+ hf_model_weights_iterator)
|
|
|
|
+from aphrodite.common.sequence import SamplerOutput
|
|
|
|
+from aphrodite.transformers_utils.configs import RWConfig
|
|
|
|
+
|
|
|
|
+KVCache = Tuple[torch.Tensor, torch.Tensor]
|
|
|
|
+FalconConfig = Union[HF_FalconConfig, RWConfig]
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
|
|
|
|
+ closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
|
|
|
|
+ base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
|
|
|
|
+ dtype=torch.float32)
|
|
|
|
+ powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
|
|
|
|
+ slopes = torch.pow(base, powers)
|
|
|
|
+
|
|
|
|
+ if closest_power_of_2 != total_num_heads:
|
|
|
|
+ extra_base = torch.tensor(
|
|
|
|
+ 2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
|
|
|
|
+ dtype=torch.float32)
|
|
|
|
+ num_remaining_heads = min(closest_power_of_2,
|
|
|
|
+ total_num_heads - closest_power_of_2)
|
|
|
|
+ extra_powers = torch.arange(1,
|
|
|
|
+ 1 + 2 * num_remaining_heads,
|
|
|
|
+ 2,
|
|
|
|
+ dtype=torch.int32)
|
|
|
|
+ slopes = torch.cat(
|
|
|
|
+ [slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
|
|
|
+
|
|
|
|
+ return slopes
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class FalconAttention(nn.Module):
|
|
|
|
+
|
|
|
|
+ def __init__(
|
|
|
|
+ self,
|
|
|
|
+ config: FalconConfig,
|
|
|
|
+ linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
+ ):
|
|
|
|
+ super().__init__()
|
|
|
|
+
|
|
|
|
+ self.hidden_size = config.hidden_size
|
|
|
|
+ tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
+
|
|
|
|
+ self.total_num_heads = config.num_attention_heads
|
|
|
|
+ assert self.total_num_heads % tp_size == 0
|
|
|
|
+ self.num_heads = self.total_num_heads // tp_size
|
|
|
|
+ self.head_dim = self.hidden_size // self.total_num_heads
|
|
|
|
+ assert self.head_dim * self.total_num_heads == self.hidden_size
|
|
|
|
+
|
|
|
|
+ self.new_decoder_architecture = config.new_decoder_architecture
|
|
|
|
+ self.multi_query = config.multi_query
|
|
|
|
+
|
|
|
|
+ if self.new_decoder_architecture:
|
|
|
|
+ self.total_num_kv_heads = config.num_kv_heads
|
|
|
|
+ elif self.multi_query:
|
|
|
|
+ self.total_num_kv_heads = 1
|
|
|
|
+ else:
|
|
|
|
+ self.total_num_kv_heads = self.total_num_heads
|
|
|
|
+ if self.total_num_kv_heads >= tp_size:
|
|
|
|
+ # Number of KV heads is greater than TP size, so we partition
|
|
|
|
+ # the KV heads across multiple tensor parallel GPUs.
|
|
|
|
+ assert self.total_num_kv_heads % tp_size == 0
|
|
|
|
+ else:
|
|
|
|
+ # Number of KV heads is less than TP size, so we replicate
|
|
|
|
+ # the KV heads across multiple tensor parallel GPUs.
|
|
|
|
+ assert tp_size % self.total_num_kv_heads == 0
|
|
|
|
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
|
|
+
|
|
|
|
+ self.query_key_value = QKVParallelLinear(
|
|
|
|
+ self.hidden_size,
|
|
|
|
+ self.head_dim,
|
|
|
|
+ self.total_num_heads,
|
|
|
|
+ self.total_num_kv_heads,
|
|
|
|
+ bias=config.bias,
|
|
|
|
+ skip_bias_add=True,
|
|
|
|
+ linear_method=linear_method,
|
|
|
|
+ )
|
|
|
|
+ self.q_size = self.num_heads * self.head_dim
|
|
|
|
+ self.kv_size = self.num_kv_heads * self.head_dim
|
|
|
|
+
|
|
|
|
+ # Layer-wise attention scaling
|
|
|
|
+ self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
|
|
|
+ self.reduce_row_parallel_results = not (config.new_decoder_architecture
|
|
|
|
+ or config.parallel_attn)
|
|
|
|
+ self.dense = RowParallelLinear(
|
|
|
|
+ self.hidden_size,
|
|
|
|
+ self.hidden_size,
|
|
|
|
+ bias=config.bias,
|
|
|
|
+ skip_bias_add=True,
|
|
|
|
+ linear_method=linear_method,
|
|
|
|
+ reduce_results=self.reduce_row_parallel_results)
|
|
|
|
+
|
|
|
|
+ self.use_rotary = config.rotary
|
|
|
|
+ self.use_alibi = config.alibi
|
|
|
|
+ assert not (self.use_rotary and self.use_alibi), (
|
|
|
|
+ "Rotary and alibi are mutually exclusive.")
|
|
|
|
+
|
|
|
|
+ if self.use_rotary:
|
|
|
|
+ rope_theta = getattr(config, "rope_theta", 10000)
|
|
|
|
+ max_position_embeddings = getattr(config,
|
|
|
|
+ "max_position_embeddings", 8192)
|
|
|
|
+ self.rotary_emb = get_rope(
|
|
|
|
+ self.head_dim,
|
|
|
|
+ rotary_dim=self.head_dim,
|
|
|
|
+ max_position=max_position_embeddings,
|
|
|
|
+ base=rope_theta,
|
|
|
|
+ )
|
|
|
|
+ self.attn = PagedAttention(self.num_heads,
|
|
|
|
+ self.head_dim,
|
|
|
|
+ self.inv_norm_factor,
|
|
|
|
+ num_kv_heads=self.num_kv_heads)
|
|
|
|
+ elif self.use_alibi:
|
|
|
|
+ tp_rank = get_tensor_model_parallel_rank()
|
|
|
|
+ head_start = tp_rank * self.num_heads
|
|
|
|
+ head_end = (tp_rank + 1) * self.num_heads
|
|
|
|
+ alibi_slopes = (_get_alibi_slopes(self.total_num_heads) *
|
|
|
|
+ self.inv_norm_factor)
|
|
|
|
+ alibi_slopes = alibi_slopes[head_start:head_end].tolist()
|
|
|
|
+ self.attn = PagedAttention(self.num_heads,
|
|
|
|
+ self.head_dim,
|
|
|
|
+ self.inv_norm_factor,
|
|
|
|
+ num_kv_heads=self.num_kv_heads,
|
|
|
|
+ alibi_slopes=alibi_slopes)
|
|
|
|
+ else:
|
|
|
|
+ self.attn = PagedAttention(self.num_heads,
|
|
|
|
+ self.head_dim,
|
|
|
|
+ scale=self.inv_norm_factor,
|
|
|
|
+ num_kv_heads=self.num_kv_heads)
|
|
|
|
+
|
|
|
|
+ def forward(
|
|
|
|
+ self,
|
|
|
|
+ positions: torch.Tensor,
|
|
|
|
+ hidden_states: torch.Tensor,
|
|
|
|
+ kv_cache: KVCache,
|
|
|
|
+ input_metadata: InputMetadata,
|
|
|
|
+ ) -> torch.Tensor:
|
|
|
|
+ qkv, bias = self.query_key_value(hidden_states)
|
|
|
|
+ if bias is not None:
|
|
|
|
+ qkv += bias
|
|
|
|
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
|
|
+ if self.use_rotary:
|
|
|
|
+ q, k = self.rotary_emb(positions, q, k)
|
|
|
|
+ k_cache, v_cache = kv_cache
|
|
|
|
+ attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
|
|
|
+ attn_output, bias = self.dense(attn_output)
|
|
|
|
+ return attn_output, bias
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class FalconMLP(nn.Module):
|
|
|
|
+
|
|
|
|
+ def __init__(
|
|
|
|
+ self,
|
|
|
|
+ config: FalconConfig,
|
|
|
|
+ linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
+ ):
|
|
|
|
+ super().__init__()
|
|
|
|
+ hidden_size = config.hidden_size
|
|
|
|
+
|
|
|
|
+ self.dense_h_to_4h = ColumnParallelLinear(hidden_size,
|
|
|
|
+ 4 * hidden_size,
|
|
|
|
+ bias=config.bias,
|
|
|
|
+ skip_bias_add=True,
|
|
|
|
+ linear_method=linear_method)
|
|
|
|
+ quant_config = getattr(linear_method, "quant_config", None)
|
|
|
|
+ self.act = get_act_fn("gelu", quant_config, 4 * hidden_size)
|
|
|
|
+ self.reduce_row_parallel_results = not (config.new_decoder_architecture
|
|
|
|
+ or config.parallel_attn)
|
|
|
|
+ self.dense_4h_to_h = RowParallelLinear(
|
|
|
|
+ 4 * hidden_size,
|
|
|
|
+ hidden_size,
|
|
|
|
+ bias=config.bias,
|
|
|
|
+ skip_bias_add=True,
|
|
|
|
+ reduce_results=self.reduce_row_parallel_results,
|
|
|
|
+ linear_method=linear_method)
|
|
|
|
+
|
|
|
|
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
+ # NOTE(zhuohan): Following huggingface, we do not fuse bias add here.
|
|
|
|
+ x, bias = self.dense_h_to_4h(x)
|
|
|
|
+ if bias is not None:
|
|
|
|
+ x += bias
|
|
|
|
+ x = self.act(x)
|
|
|
|
+ x, bias = self.dense_4h_to_h(x)
|
|
|
|
+ return x, bias
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class FalconDecoderLayer(nn.Module):
|
|
|
|
+
|
|
|
|
+ def __init__(
|
|
|
|
+ self,
|
|
|
|
+ config: FalconConfig,
|
|
|
|
+ linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
+ ):
|
|
|
|
+ super().__init__()
|
|
|
|
+ hidden_size = config.hidden_size
|
|
|
|
+ self.num_heads = config.num_attention_heads
|
|
|
|
+ self.self_attention = FalconAttention(config, linear_method)
|
|
|
|
+ self.mlp = FalconMLP(config, linear_method)
|
|
|
|
+ self.config = config
|
|
|
|
+
|
|
|
|
+ if config.new_decoder_architecture:
|
|
|
|
+ # The layer norm before self-attention
|
|
|
|
+ self.ln_attn = LayerNorm(hidden_size,
|
|
|
|
+ eps=config.layer_norm_epsilon)
|
|
|
|
+ # The layer norm before the MLP
|
|
|
|
+ self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
+ else:
|
|
|
|
+ self.input_layernorm = LayerNorm(hidden_size,
|
|
|
|
+ eps=config.layer_norm_epsilon)
|
|
|
|
+ if not config.parallel_attn:
|
|
|
|
+ self.post_attention_layernorm = LayerNorm(
|
|
|
|
+ hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
+
|
|
|
|
+ self.reduce_row_parallel_results = not (config.new_decoder_architecture
|
|
|
|
+ or config.parallel_attn)
|
|
|
|
+
|
|
|
|
+ def forward(
|
|
|
|
+ self,
|
|
|
|
+ positions: torch.Tensor,
|
|
|
|
+ hidden_states: torch.Tensor,
|
|
|
|
+ kv_cache: KVCache,
|
|
|
|
+ input_metadata: InputMetadata,
|
|
|
|
+ ) -> torch.Tensor:
|
|
|
|
+ residual = hidden_states
|
|
|
|
+
|
|
|
|
+ if self.config.new_decoder_architecture:
|
|
|
|
+ attention_layernorm_out = self.ln_attn(hidden_states)
|
|
|
|
+ mlp_layernorm_out = self.ln_mlp(hidden_states)
|
|
|
|
+ else:
|
|
|
|
+ attention_layernorm_out = self.input_layernorm(hidden_states)
|
|
|
|
+
|
|
|
|
+ # Self attention.
|
|
|
|
+ attention_output, attention_bias = self.self_attention(
|
|
|
|
+ positions=positions,
|
|
|
|
+ hidden_states=attention_layernorm_out,
|
|
|
|
+ kv_cache=kv_cache,
|
|
|
|
+ input_metadata=input_metadata,
|
|
|
|
+ )
|
|
|
|
+ if self.reduce_row_parallel_results and attention_bias is not None:
|
|
|
|
+ attention_output += attention_bias
|
|
|
|
+
|
|
|
|
+ if not self.config.new_decoder_architecture:
|
|
|
|
+ if self.config.parallel_attn:
|
|
|
|
+ mlp_layernorm_out = attention_layernorm_out
|
|
|
|
+ else:
|
|
|
|
+ residual += attention_output
|
|
|
|
+ mlp_layernorm_out = self.post_attention_layernorm(residual)
|
|
|
|
+
|
|
|
|
+ # MLP.
|
|
|
|
+ mlp_output, mlp_bias = self.mlp(mlp_layernorm_out)
|
|
|
|
+ if self.reduce_row_parallel_results and mlp_bias is not None:
|
|
|
|
+ mlp_output += mlp_bias
|
|
|
|
+
|
|
|
|
+ if not self.reduce_row_parallel_results:
|
|
|
|
+ # When MLP and Attention layers are parallel, we can use
|
|
|
|
+ # only one all-reduce operator to reduce the results from
|
|
|
|
+ # both MLP and Attention layers.
|
|
|
|
+ mlp_output += attention_output
|
|
|
|
+ mlp_output = tensor_model_parallel_all_reduce(mlp_output)
|
|
|
|
+ if attention_bias is not None:
|
|
|
|
+ mlp_output += attention_bias
|
|
|
|
+ if mlp_bias is not None:
|
|
|
|
+ mlp_output += mlp_bias
|
|
|
|
+
|
|
|
|
+ output = mlp_output + residual
|
|
|
|
+ return output
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class FalconModel(nn.Module):
|
|
|
|
+
|
|
|
|
+ def __init__(
|
|
|
|
+ self,
|
|
|
|
+ config: FalconConfig,
|
|
|
|
+ linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
+ ):
|
|
|
|
+ super().__init__()
|
|
|
|
+ self.config = config
|
|
|
|
+ self.embed_dim = config.hidden_size
|
|
|
|
+ self.num_heads = config.num_attention_heads
|
|
|
|
+ self.use_alibi = config.alibi
|
|
|
|
+
|
|
|
|
+ # Embedding + LN Embedding
|
|
|
|
+ self.word_embeddings = VocabParallelEmbedding(
|
|
|
|
+ config.vocab_size, self.embed_dim, linear_method=linear_method)
|
|
|
|
+
|
|
|
|
+ # Transformer blocks
|
|
|
|
+ self.h = nn.ModuleList([
|
|
|
|
+ FalconDecoderLayer(config, linear_method)
|
|
|
|
+ for _ in range(config.num_hidden_layers)
|
|
|
|
+ ])
|
|
|
|
+
|
|
|
|
+ # Final Layer Norm
|
|
|
|
+ self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
+
|
|
|
|
+ def forward(
|
|
|
|
+ self,
|
|
|
|
+ input_ids: torch.LongTensor,
|
|
|
|
+ positions: torch.Tensor,
|
|
|
|
+ kv_caches: List[KVCache],
|
|
|
|
+ input_metadata: InputMetadata,
|
|
|
|
+ ) -> torch.Tensor:
|
|
|
|
+ hidden_states = self.word_embeddings(input_ids)
|
|
|
|
+ for i in range(len(self.h)):
|
|
|
|
+ layer = self.h[i]
|
|
|
|
+ hidden_states = layer(
|
|
|
|
+ positions,
|
|
|
|
+ hidden_states,
|
|
|
|
+ kv_caches[i],
|
|
|
|
+ input_metadata,
|
|
|
|
+ )
|
|
|
|
+ hidden_states = self.ln_f(hidden_states)
|
|
|
|
+ return hidden_states
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class FalconForCausalLM(nn.Module):
|
|
|
|
+
|
|
|
|
+ def __init__(
|
|
|
|
+ self,
|
|
|
|
+ config: FalconConfig,
|
|
|
|
+ linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
+ ):
|
|
|
|
+ super().__init__()
|
|
|
|
+ self.config = config
|
|
|
|
+ self.linear_method = linear_method
|
|
|
|
+ self.transformer = FalconModel(config, linear_method)
|
|
|
|
+ self.lm_head = ParallelLMHead(config.vocab_size,
|
|
|
|
+ config.hidden_size,
|
|
|
|
+ linear_method=linear_method)
|
|
|
|
+ self.sampler = Sampler(config.vocab_size)
|
|
|
|
+
|
|
|
|
+ def forward(
|
|
|
|
+ self,
|
|
|
|
+ input_ids: torch.LongTensor,
|
|
|
|
+ positions: torch.Tensor,
|
|
|
|
+ kv_caches: List[KVCache],
|
|
|
|
+ input_metadata: InputMetadata,
|
|
|
|
+ ) -> torch.Tensor:
|
|
|
|
+ hidden_states = self.transformer(
|
|
|
|
+ input_ids,
|
|
|
|
+ positions,
|
|
|
|
+ kv_caches,
|
|
|
|
+ input_metadata,
|
|
|
|
+ )
|
|
|
|
+ return hidden_states
|
|
|
|
+
|
|
|
|
+ def sample(
|
|
|
|
+ self,
|
|
|
|
+ hidden_states: torch.Tensor,
|
|
|
|
+ sampling_metadata: SamplingMetadata,
|
|
|
|
+ ) -> Optional[SamplerOutput]:
|
|
|
|
+ next_tokens = self.sampler(self.lm_head(hidden_states),
|
|
|
|
+ sampling_metadata)
|
|
|
|
+ return next_tokens
|
|
|
|
+
|
|
|
|
+ def load_weights(self,
|
|
|
|
+ model_name_or_path: str,
|
|
|
|
+ cache_dir: Optional[str] = None,
|
|
|
|
+ load_format: str = "auto",
|
|
|
|
+ revision: Optional[str] = None):
|
|
|
|
+ total_num_heads = self.config.num_attention_heads
|
|
|
|
+ if self.config.new_decoder_architecture:
|
|
|
|
+ total_num_kv_heads = self.config.num_kv_heads
|
|
|
|
+ elif self.config.multi_query:
|
|
|
|
+ total_num_kv_heads = 1
|
|
|
|
+ else:
|
|
|
|
+ total_num_kv_heads = total_num_heads
|
|
|
|
+ num_query_heads_per_kv_head = total_num_heads // total_num_kv_heads
|
|
|
|
+ params_dict = dict(self.named_parameters())
|
|
|
|
+ for name, loaded_weight in hf_model_weights_iterator(
|
|
|
|
+ model_name_or_path, cache_dir, load_format, revision,
|
|
|
|
+ self.config):
|
|
|
|
+ # Skip loading extra bias for GPTQ models.
|
|
|
|
+ if name.endswith(".bias") and name not in params_dict:
|
|
|
|
+ continue
|
|
|
|
+ param = params_dict[name]
|
|
|
|
+ if "query_key_value" in name:
|
|
|
|
+ output_dim = getattr(param, "output_dim", None)
|
|
|
|
+ loaded_weight_shape = loaded_weight.shape
|
|
|
|
+ if output_dim is not None:
|
|
|
|
+ loaded_weight = loaded_weight.view(
|
|
|
|
+ loaded_weight_shape[:output_dim] +
|
|
|
|
+ (total_num_kv_heads, num_query_heads_per_kv_head + 2,
|
|
|
|
+ -1) + loaded_weight_shape[output_dim + 1:])
|
|
|
|
+ wq = loaded_weight.narrow(
|
|
|
|
+ output_dim + 1, 0,
|
|
|
|
+ num_query_heads_per_kv_head).reshape(
|
|
|
|
+ *loaded_weight_shape[:output_dim], -1,
|
|
|
|
+ *loaded_weight_shape[output_dim + 1:])
|
|
|
|
+ wk = loaded_weight.narrow(
|
|
|
|
+ output_dim + 1, num_query_heads_per_kv_head,
|
|
|
|
+ 1).reshape(*loaded_weight_shape[:output_dim], -1,
|
|
|
|
+ *loaded_weight_shape[output_dim + 1:])
|
|
|
|
+ wv = loaded_weight.narrow(
|
|
|
|
+ output_dim + 1, num_query_heads_per_kv_head + 1,
|
|
|
|
+ 1).reshape(*loaded_weight_shape[:output_dim], -1,
|
|
|
|
+ *loaded_weight_shape[output_dim + 1:])
|
|
|
|
+ loaded_weight = torch.cat([wq, wk, wv], dim=output_dim)
|
|
|
|
+
|
|
|
|
+ weight_loader = getattr(param, "weight_loader",
|
|
|
|
+ default_weight_loader)
|
|
|
|
+ weight_loader(param, loaded_weight)
|