|
@@ -214,22 +214,24 @@ class CLIPEncoder(nn.Module):
|
|
|
|
|
|
def __init__(self,
|
|
|
config: CLIPVisionConfig,
|
|
|
- quant_config: Optional[QuantizationConfig] = None):
|
|
|
+ quant_config: Optional[QuantizationConfig] = None,
|
|
|
+ num_hidden_layers_override: Optional[int] = None):
|
|
|
super().__init__()
|
|
|
self.config = config
|
|
|
+
|
|
|
+ if num_hidden_layers_override is None:
|
|
|
+ num_hidden_layers = config.num_hidden_layers
|
|
|
+ else:
|
|
|
+ num_hidden_layers = num_hidden_layers_override
|
|
|
self.layers = nn.ModuleList([
|
|
|
CLIPEncoderLayer(config=config, quant_config=quant_config)
|
|
|
- for _ in range(config.num_hidden_layers)
|
|
|
+ for _ in range(num_hidden_layers)
|
|
|
])
|
|
|
|
|
|
- def forward(self,
|
|
|
- inputs_embeds: torch.Tensor,
|
|
|
- vision_feature_layer: int = -1):
|
|
|
+ def forward(self, inputs_embeds: torch.Tensor):
|
|
|
|
|
|
- # Encoder forward pass only up to the required layer
|
|
|
- num_layer = len(self.layers) + vision_feature_layer + 1
|
|
|
hidden_states = inputs_embeds
|
|
|
- for encoder_layer in self.layers[:num_layer]:
|
|
|
+ for encoder_layer in self.layers:
|
|
|
hidden_states = encoder_layer(hidden_states)
|
|
|
|
|
|
return hidden_states
|
|
@@ -239,7 +241,8 @@ class CLIPVisionTransformer(nn.Module):
|
|
|
|
|
|
def __init__(self,
|
|
|
config: CLIPVisionConfig,
|
|
|
- quant_config: Optional[QuantizationConfig] = None):
|
|
|
+ quant_config: Optional[QuantizationConfig] = None,
|
|
|
+ num_hidden_layers_override: Optional[int] = None):
|
|
|
super().__init__()
|
|
|
self.config = config
|
|
|
embed_dim = config.hidden_size
|
|
@@ -249,18 +252,19 @@ class CLIPVisionTransformer(nn.Module):
|
|
|
# NOTE: This typo of "layrnorm" is not fixed on purpose to match
|
|
|
# the original transformers code and name of the model weights.
|
|
|
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
|
- self.encoder = CLIPEncoder(config=config, quant_config=quant_config)
|
|
|
+ self.encoder = CLIPEncoder(
|
|
|
+ config=config,
|
|
|
+ quant_config=quant_config,
|
|
|
+ num_hidden_layers_override=num_hidden_layers_override)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
pixel_values: torch.Tensor,
|
|
|
- vision_feature_layer: int = -1,
|
|
|
) -> torch.Tensor:
|
|
|
|
|
|
hidden_states = self.embeddings(pixel_values)
|
|
|
hidden_states = self.pre_layrnorm(hidden_states)
|
|
|
- hidden_states = self.encoder(inputs_embeds=hidden_states,
|
|
|
- vision_feature_layer=vision_feature_layer)
|
|
|
+ hidden_states = self.encoder(inputs_embeds=hidden_states)
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
@@ -272,17 +276,17 @@ class CLIPVisionModel(nn.Module):
|
|
|
|
|
|
def __init__(self,
|
|
|
config: CLIPVisionConfig,
|
|
|
- quant_config: Optional[QuantizationConfig] = None):
|
|
|
+ quant_config: Optional[QuantizationConfig] = None,
|
|
|
+ num_hidden_layers_override: Optional[int] = None):
|
|
|
super().__init__()
|
|
|
- self.vision_model = CLIPVisionTransformer(config=config,
|
|
|
- quant_config=quant_config)
|
|
|
+ self.vision_model = CLIPVisionTransformer(
|
|
|
+ config=config,
|
|
|
+ quant_config=quant_config,
|
|
|
+ num_hidden_layers_override=num_hidden_layers_override)
|
|
|
|
|
|
- def forward(self,
|
|
|
- pixel_values: Optional[torch.Tensor] = None,
|
|
|
- vision_feature_layer: int = -1):
|
|
|
+ def forward(self, pixel_values: Optional[torch.Tensor] = None):
|
|
|
|
|
|
- return self.vision_model(pixel_values=pixel_values,
|
|
|
- vision_feature_layer=vision_feature_layer)
|
|
|
+ return self.vision_model(pixel_values=pixel_values)
|
|
|
|
|
|
@property
|
|
|
def device(self):
|