|
@@ -0,0 +1,180 @@
|
|
|
+from typing import Any, Dict, List, Optional
|
|
|
+
|
|
|
+import torch
|
|
|
+from loguru import logger
|
|
|
+from torch.nn import Module
|
|
|
+from torch.nn.parameter import Parameter
|
|
|
+
|
|
|
+from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
|
|
|
+from aphrodite.modeling.parameter import (ModelWeightParameter,
|
|
|
+ PerTensorScaleParameter)
|
|
|
+from aphrodite.quantization.base_config import (QuantizationConfig,
|
|
|
+ QuantizeMethodBase)
|
|
|
+from aphrodite.quantization.kv_cache import BaseKVCacheMethod
|
|
|
+from aphrodite.quantization.utils.w8a8_utils import (apply_fp8_linear,
|
|
|
+ cutlass_fp8_supported,
|
|
|
+ requantize_with_max_scale)
|
|
|
+
|
|
|
+ACTIVATION_SCHEMES = ["static"]
|
|
|
+
|
|
|
+
|
|
|
+class ModelOptFp8Config(QuantizationConfig):
|
|
|
+ """Config class for ModelOpt FP8."""
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ is_checkpoint_fp8_serialized: bool = False,
|
|
|
+ ) -> None:
|
|
|
+ self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
|
|
|
+ if is_checkpoint_fp8_serialized:
|
|
|
+ logger.warning(
|
|
|
+ "Detected ModelOpt fp8 checkpoint. Please note that"
|
|
|
+ " the format is experimental and could change."
|
|
|
+ )
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def get_name(cls) -> str:
|
|
|
+ return "modelopt"
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
|
+ return [torch.bfloat16, torch.half]
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def get_min_capability(cls) -> int:
|
|
|
+ return 89
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def get_config_filenames(cls) -> List[str]:
|
|
|
+ return ["hf_quant_config.json"]
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_config(cls, config: Dict[str, Any]) -> "ModelOptFp8Config":
|
|
|
+ quant_config = cls.get_from_keys(config, ["quantization"])
|
|
|
+ quant_method = quant_config["quant_algo"]
|
|
|
+ is_checkpoint_fp8_serialized = "FP8" in quant_method
|
|
|
+ if not is_checkpoint_fp8_serialized:
|
|
|
+ raise ValueError(
|
|
|
+ "ModelOpt currently only supports static FP8"
|
|
|
+ "quantization in Aphrodite. Please check the "
|
|
|
+ "`hf_quant_config.json` file for your model's "
|
|
|
+ "quant configuration."
|
|
|
+ )
|
|
|
+ return cls(is_checkpoint_fp8_serialized)
|
|
|
+
|
|
|
+ def get_quant_method(
|
|
|
+ self, layer: torch.nn.Module, prefix: str
|
|
|
+ ) -> Optional["QuantizeMethodBase"]:
|
|
|
+ from aphrodite.attention.layer import (
|
|
|
+ Attention) # Avoid circular import
|
|
|
+
|
|
|
+ if isinstance(layer, LinearBase):
|
|
|
+ return ModelOptFp8LinearMethod(self)
|
|
|
+ elif isinstance(layer, Attention):
|
|
|
+ return ModelOptFp8KVCacheMethod(self)
|
|
|
+ return None
|
|
|
+
|
|
|
+ def get_scaled_act_names(self) -> List[str]:
|
|
|
+ return []
|
|
|
+
|
|
|
+
|
|
|
+class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
|
|
|
+ """
|
|
|
+ Supports loading kv-cache scaling factors from FP8 checkpoints.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, quant_config: ModelOptFp8Config):
|
|
|
+ super().__init__(quant_config)
|
|
|
+
|
|
|
+
|
|
|
+class ModelOptFp8LinearMethod(LinearMethodBase):
|
|
|
+ """Linear method for Model Optimizer static quantization.
|
|
|
+ Supports loading FP8 checkpoints with static weight scale and
|
|
|
+ activation scale. Future support might be added for dynamic
|
|
|
+ scales.
|
|
|
+ Limitations:
|
|
|
+ 1. Only support per-tensor quantization due to torch._scaled_mm support.
|
|
|
+ 2. Only support float8_e4m3fn datatype
|
|
|
+ Args: quant_config: The ModelOpt quantization config.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, quant_config: ModelOptFp8Config):
|
|
|
+ self.quant_config = quant_config
|
|
|
+ self.cutlass_fp8_supported = cutlass_fp8_supported()
|
|
|
+
|
|
|
+ def create_weights(
|
|
|
+ self,
|
|
|
+ layer: torch.nn.Module,
|
|
|
+ input_size_per_partition: int,
|
|
|
+ output_partition_sizes: List[int],
|
|
|
+ input_size: int,
|
|
|
+ output_size: int,
|
|
|
+ params_dtype: torch.dtype,
|
|
|
+ **extra_weight_attrs,
|
|
|
+ ):
|
|
|
+ del input_size, output_size
|
|
|
+ output_size_per_partition = sum(output_partition_sizes)
|
|
|
+ weight_loader = extra_weight_attrs.get("weight_loader")
|
|
|
+ layer.logical_widths = output_partition_sizes
|
|
|
+ layer.input_size_per_partition = input_size_per_partition
|
|
|
+ layer.output_size_per_partition = output_size_per_partition
|
|
|
+ weight_dtype = (
|
|
|
+ torch.float8_e4m3fn
|
|
|
+ if self.quant_config.is_checkpoint_fp8_serialized
|
|
|
+ else params_dtype
|
|
|
+ )
|
|
|
+ weight = ModelWeightParameter(
|
|
|
+ data=torch.empty(
|
|
|
+ output_size_per_partition,
|
|
|
+ input_size_per_partition,
|
|
|
+ dtype=weight_dtype,
|
|
|
+ ),
|
|
|
+ input_dim=1,
|
|
|
+ output_dim=0,
|
|
|
+ weight_loader=weight_loader,
|
|
|
+ )
|
|
|
+ layer.register_parameter("weight", weight)
|
|
|
+ if self.quant_config.is_checkpoint_fp8_serialized:
|
|
|
+ # WEIGHT SCALE
|
|
|
+ weight_scale = PerTensorScaleParameter(
|
|
|
+ data=torch.empty(
|
|
|
+ len(output_partition_sizes), dtype=torch.float32
|
|
|
+ ),
|
|
|
+ weight_loader=weight_loader,
|
|
|
+ )
|
|
|
+ weight_scale[:] = torch.finfo(torch.float32).min
|
|
|
+ layer.register_parameter("weight_scale", weight_scale)
|
|
|
+ # INPUT SCALE
|
|
|
+ scale = PerTensorScaleParameter(
|
|
|
+ data=torch.empty(
|
|
|
+ len(output_partition_sizes), dtype=torch.float32
|
|
|
+ ),
|
|
|
+ weight_loader=weight_loader,
|
|
|
+ )
|
|
|
+ scale[:] = torch.finfo(torch.float32).min
|
|
|
+ layer.register_parameter("input_scale", scale)
|
|
|
+
|
|
|
+ def process_weights_after_loading(self, layer: Module) -> None:
|
|
|
+ max_w_scale, weight = requantize_with_max_scale(
|
|
|
+ layer.weight, layer.weight_scale, layer.logical_widths
|
|
|
+ )
|
|
|
+ layer.weight = Parameter(weight.t(), requires_grad=False)
|
|
|
+ layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
|
|
|
+ layer.input_scale = Parameter(
|
|
|
+ layer.input_scale.max(), requires_grad=False
|
|
|
+ )
|
|
|
+
|
|
|
+ def apply(
|
|
|
+ self,
|
|
|
+ layer: torch.nn.Module,
|
|
|
+ x: torch.Tensor,
|
|
|
+ bias: Optional[torch.Tensor] = None,
|
|
|
+ ) -> torch.Tensor:
|
|
|
+ return apply_fp8_linear(
|
|
|
+ input=x,
|
|
|
+ weight=layer.weight,
|
|
|
+ weight_scale=layer.weight_scale,
|
|
|
+ input_scale=layer.input_scale,
|
|
|
+ bias=bias,
|
|
|
+ cutlass_fp8_supported=self.cutlass_fp8_supported,
|
|
|
+ )
|