|
@@ -97,15 +97,7 @@ class LinearMethodBase(QuantizeMethodBase):
|
|
|
|
|
|
|
|
|
class UnquantizedLinearMethod(LinearMethodBase):
|
|
|
- """Linear method without quantization.
|
|
|
-
|
|
|
- Args:
|
|
|
- separate_bias_add: If true, add bias separately after matrix
|
|
|
- multiplication.
|
|
|
- """
|
|
|
-
|
|
|
- def __init__(self, separate_bias_add: bool = False):
|
|
|
- self.separate_bias_add = separate_bias_add
|
|
|
+ """Linear method without quantization."""
|
|
|
|
|
|
def create_weights(self, layer: torch.nn.Module,
|
|
|
input_size_per_partition: int,
|
|
@@ -124,12 +116,8 @@ class UnquantizedLinearMethod(LinearMethodBase):
|
|
|
layer: torch.nn.Module,
|
|
|
x: torch.Tensor,
|
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
- weight = layer.weight
|
|
|
- if self.separate_bias_add:
|
|
|
- if bias is not None:
|
|
|
- return F.linear(x, weight) + bias
|
|
|
- return F.linear(x, weight)
|
|
|
- return F.linear(x, weight, bias)
|
|
|
+
|
|
|
+ return F.linear(x, layer.weight, bias)
|
|
|
|
|
|
|
|
|
class LinearBase(torch.nn.Module):
|