|
@@ -0,0 +1,1110 @@
|
|
|
+/*
|
|
|
+ * Notice: This file was modified by Neuralmagic inc to include 8-bit support
|
|
|
+ *
|
|
|
+ * Copyright (C) 2024 Roberto Lopez Castro (roberto.lopez.castro@udc.es). All
|
|
|
+ * Rights Reserved.
|
|
|
+ *
|
|
|
+ * Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+ * you may not use this file except in compliance with the License.
|
|
|
+ * You may obtain a copy of the License at
|
|
|
+ *
|
|
|
+ * http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+ *
|
|
|
+ * Unless required by applicable law or agreed to in writing, software
|
|
|
+ * distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+ * See the License for the specific language governing permissions and
|
|
|
+ * limitations under the License.
|
|
|
+ */
|
|
|
+#include <torch/extension.h>
|
|
|
+
|
|
|
+#include <ATen/cuda/CUDAContext.h>
|
|
|
+#include <c10/cuda/CUDAGuard.h>
|
|
|
+#include <cuda.h>
|
|
|
+#include <cuda_fp16.h>
|
|
|
+#include <cuda_runtime.h>
|
|
|
+
|
|
|
+#include <iostream>
|
|
|
+
|
|
|
+#include "common/base.h"
|
|
|
+
|
|
|
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
|
|
+
|
|
|
+#else
|
|
|
+
|
|
|
+#include "common/mem.h"
|
|
|
+#include "common/mma.h"
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+template <typename T> inline std::string str(T x) { return std::to_string(x); }
|
|
|
+
|
|
|
+namespace marlin_24 {
|
|
|
+
|
|
|
+// 8 warps are a good choice since every SM has 4 schedulers and having more
|
|
|
+// than 1 warp per schedule allows some more latency hiding. At the same time,
|
|
|
+// we want relatively few warps to have many registers per warp and small tiles.
|
|
|
+static constexpr int THREADS = 256;
|
|
|
+static constexpr int STAGES = 4; // 4 pipeline stages fit into shared memory
|
|
|
+
|
|
|
+static constexpr int min_thread_n = 128;
|
|
|
+
|
|
|
+static constexpr int tile_size = 16;
|
|
|
+static constexpr int max_par = 16;
|
|
|
+
|
|
|
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
|
|
+
|
|
|
+template <const int num_bits, // weight bits
|
|
|
+ const int threads, // number of threads in a threadblock
|
|
|
+ const int thread_m_blocks, // number of 16x16 blocks in the m
|
|
|
+ // dimension (batchsize) of the threadblock
|
|
|
+ const int thread_n_blocks, // same for n dimension (output)
|
|
|
+ const int thread_k_blocks, // same for k dimension (reduction)
|
|
|
+ const int stages, // number of stages for the async global->shared
|
|
|
+ // fetch pipeline
|
|
|
+ const int group_blocks = -1 // number of consecutive 16x16 blocks with
|
|
|
+ // a separate quantization scale
|
|
|
+ >
|
|
|
+__global__ void Marlin_24(
|
|
|
+ const int4 *__restrict__ A, // fp16 input matrix of shape mxk
|
|
|
+ const int4 *__restrict__ B, // 4bit quantized weight matrix of shape kxn
|
|
|
+ const int4
|
|
|
+ *__restrict__ meta, // 2bit metadata information about 2:4 format on B
|
|
|
+ int4 *__restrict__ C, // fp16 output buffer of shape mxn
|
|
|
+ const int4
|
|
|
+ *__restrict__ s, // fp16 quantization scales of shape (k/groupsize)xn
|
|
|
+ int prob_m, // batch dimension m
|
|
|
+ int prob_n, // output dimension n
|
|
|
+ int prob_k, // reduction dimension k
|
|
|
+ int *locks // extra global storage for barrier synchronization
|
|
|
+) {}
|
|
|
+
|
|
|
+torch::Tensor gptq_marlin_24_gemm(torch::Tensor &a, torch::Tensor &b_q_weight,
|
|
|
+ torch::Tensor &b_meta,
|
|
|
+ torch::Tensor &b_scales,
|
|
|
+ torch::Tensor &workspace, int64_t num_bits,
|
|
|
+ int64_t size_m, int64_t size_n,
|
|
|
+ int64_t size_k) {
|
|
|
+ TORCH_CHECK_NOT_IMPLEMENTED(
|
|
|
+ false, "gptq_marlin_24_gemm(..) requires CUDA_ARCH >= 8.0");
|
|
|
+ return torch::empty({1, 1});
|
|
|
+}
|
|
|
+
|
|
|
+#else
|
|
|
+
|
|
|
+template <const int num_bits, // weight bits
|
|
|
+ const int threads, // number of threads in a threadblock
|
|
|
+ const int thread_m_blocks, // number of 16x16 blocks in the m
|
|
|
+ // dimension (batchsize) of the threadblock
|
|
|
+ const int thread_n_blocks, // same for n dimension (output)
|
|
|
+ const int thread_k_blocks, // same for k dimension (reduction)
|
|
|
+ const int stages, // number of stages for the async global->shared
|
|
|
+ // fetch pipeline
|
|
|
+ const int group_blocks = -1 // number of consecutive 16x16 blocks with
|
|
|
+ // a separate quantization scale
|
|
|
+ >
|
|
|
+__global__ void Marlin_24(
|
|
|
+ const int4 *__restrict__ A, // fp16 input matrix of shape mxk
|
|
|
+ const int4 *__restrict__ B, // 4bit quantized weight matrix of shape kxn
|
|
|
+ const int4
|
|
|
+ *__restrict__ meta, // 2bit metadata information about 2:4 format on B
|
|
|
+ int4 *__restrict__ C, // fp16 output buffer of shape mxn
|
|
|
+ const int4
|
|
|
+ *__restrict__ s, // fp16 quantization scales of shape (k/groupsize)xn
|
|
|
+ int prob_m, // batch dimension m
|
|
|
+ int prob_n, // output dimension n
|
|
|
+ int prob_k, // reduction dimension k
|
|
|
+ int *locks // extra global storage for barrier synchronization
|
|
|
+) {
|
|
|
+ // Each threadblock processes one "stripe" of the B matrix with (roughly) the
|
|
|
+ // same size, which might involve multiple column "slices" (of width 16 *
|
|
|
+ // `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM
|
|
|
+ // example:
|
|
|
+ // 0 1 3
|
|
|
+ // 0 2 3
|
|
|
+ // 1 2 4
|
|
|
+ // While this kind of partitioning makes things somewhat more complicated, it
|
|
|
+ // ensures good utilization of all SMs for many kinds of shape and GPU
|
|
|
+ // configurations, while requiring as few slow global cross-threadblock
|
|
|
+ // reductions as possible.
|
|
|
+
|
|
|
+ // For larger GEMMs we run multiple batchsize 64 versions in parallel for a
|
|
|
+ // better partitioning with less reductions
|
|
|
+ int parallel = 1;
|
|
|
+ if (prob_m > 16 * thread_m_blocks) {
|
|
|
+ parallel = prob_m / (16 * thread_m_blocks);
|
|
|
+ prob_m = 16 * thread_m_blocks;
|
|
|
+ }
|
|
|
+
|
|
|
+ // number of thread_k_blocks in k-dim
|
|
|
+ int k_tiles = prob_k / 32 / thread_k_blocks;
|
|
|
+ // number of thread_n_blocks in n-dim
|
|
|
+ int n_tiles = prob_n / 16 / thread_n_blocks;
|
|
|
+ // iters needed to cover all slices
|
|
|
+ int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x);
|
|
|
+
|
|
|
+ // Ensure that the number of tiles in each stripe is a multiple of the
|
|
|
+ // groupsize; this avoids an annoying special case where a stripe starts in
|
|
|
+ // the middle of group.
|
|
|
+ if (group_blocks != -1)
|
|
|
+ iters = (group_blocks / thread_k_blocks) *
|
|
|
+ ceildiv(iters, (group_blocks / thread_k_blocks));
|
|
|
+
|
|
|
+ int slice_row = (iters * blockIdx.x) % k_tiles;
|
|
|
+ int slice_col_par = (iters * blockIdx.x) / k_tiles;
|
|
|
+ int slice_col = slice_col_par;
|
|
|
+ // number of threadblock tiles in the current slice
|
|
|
+ int slice_iters;
|
|
|
+ // total number of active threadblocks in the current slice
|
|
|
+ int slice_count = 0;
|
|
|
+ // index of threadblock in current slice; numbered bottom to top
|
|
|
+ int slice_idx;
|
|
|
+
|
|
|
+ // We can easily implement parallel problem execution by just remapping
|
|
|
+ // indices and advancing global pointers
|
|
|
+ if (slice_col_par >= n_tiles) {
|
|
|
+ A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 8;
|
|
|
+ C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8;
|
|
|
+ locks += (slice_col_par / n_tiles) * n_tiles;
|
|
|
+ slice_col = slice_col_par % n_tiles;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Compute all information about the current slice which is required for
|
|
|
+ // synchronization.
|
|
|
+ auto init_slice = [&]() {
|
|
|
+ slice_iters =
|
|
|
+ iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row);
|
|
|
+ if (slice_iters < 0 || slice_col_par >= n_tiles * parallel)
|
|
|
+ slice_iters = 0;
|
|
|
+ if (slice_iters == 0)
|
|
|
+ return;
|
|
|
+ if (slice_row + slice_iters > k_tiles)
|
|
|
+ slice_iters = k_tiles - slice_row;
|
|
|
+ slice_count = 1;
|
|
|
+ slice_idx = 0;
|
|
|
+ int col_first = iters * ceildiv(k_tiles * slice_col_par, iters);
|
|
|
+ if (col_first <= k_tiles * (slice_col_par + 1)) {
|
|
|
+ int col_off = col_first - k_tiles * slice_col_par;
|
|
|
+ slice_count = ceildiv(k_tiles - col_off, iters);
|
|
|
+ if (col_off > 0)
|
|
|
+ slice_count++;
|
|
|
+ int delta_first = iters * blockIdx.x - col_first;
|
|
|
+ if (delta_first < 0 || (col_off == 0 && delta_first == 0))
|
|
|
+ slice_idx = slice_count - 1;
|
|
|
+ else {
|
|
|
+ slice_idx = slice_count - 1 - delta_first / iters;
|
|
|
+ if (col_off > 0)
|
|
|
+ slice_idx--;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (slice_col == n_tiles) {
|
|
|
+ A += 16 * thread_m_blocks * prob_k / 8;
|
|
|
+ C += 16 * thread_m_blocks * prob_n / 8;
|
|
|
+ locks += n_tiles;
|
|
|
+ slice_col = 0;
|
|
|
+ }
|
|
|
+ };
|
|
|
+ init_slice();
|
|
|
+
|
|
|
+ // RLC: 8 is vec_size -> 128-bit instructions, 8 fp16 elements
|
|
|
+ int a_gl_stride = prob_k / 8; // stride of the A matrix in global memory
|
|
|
+
|
|
|
+ // stride of an A matrix tile in shared memory
|
|
|
+ constexpr int a_sh_stride = 32 * thread_k_blocks / 8;
|
|
|
+ // delta between subsequent A tiles in global memory
|
|
|
+ constexpr int a_gl_rd_delta_o = 32 * thread_k_blocks / 8;
|
|
|
+ // between subsequent accesses within a tile
|
|
|
+ int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o);
|
|
|
+ // between shared memory writes
|
|
|
+ constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o);
|
|
|
+ // between shared memory tile reads //RLC: 2 * #warps k-dim
|
|
|
+ constexpr int a_sh_rd_delta_o = 4 * ((threads / 32) / (thread_n_blocks / 4));
|
|
|
+ // within a shared memory tile
|
|
|
+ constexpr int a_sh_rd_delta_i = a_sh_stride * 16;
|
|
|
+ // overall size of a tile
|
|
|
+ constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks);
|
|
|
+ // number of shared write iterations for a tile
|
|
|
+ constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta);
|
|
|
+
|
|
|
+ constexpr int pack_factor = 32 / num_bits;
|
|
|
+
|
|
|
+ int b_gl_stride = 16 * prob_n / (pack_factor * 4);
|
|
|
+ constexpr int b_sh_stride = ((thread_n_blocks * 16) * 16 / pack_factor) / 4;
|
|
|
+ constexpr int b_thread_vecs = num_bits == 4 ? 1 : 2;
|
|
|
+ constexpr int b_sh_stride_threads = b_sh_stride / b_thread_vecs;
|
|
|
+ int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks;
|
|
|
+ int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride_threads);
|
|
|
+ constexpr int b_sh_wr_delta = threads * b_thread_vecs;
|
|
|
+ constexpr int b_sh_rd_delta = threads * b_thread_vecs;
|
|
|
+ constexpr int b_sh_stage = b_sh_stride * thread_k_blocks;
|
|
|
+ constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta;
|
|
|
+
|
|
|
+ int m_gl_stride = 2 * prob_n / 8; // (16*2*4 / 8) = 16
|
|
|
+ constexpr int m_sh_stride =
|
|
|
+ (16 * thread_n_blocks) / 4; // #warps n-dim * threads/warp
|
|
|
+ int m_gl_rd_delta_o = m_gl_stride * thread_k_blocks;
|
|
|
+ int m_gl_rd_delta_i = m_gl_stride * (threads / m_sh_stride);
|
|
|
+ constexpr int m_sh_wr_delta = threads / 2;
|
|
|
+ constexpr int m_sh_rd_delta = threads / 2;
|
|
|
+ constexpr int m_sh_stage = m_sh_stride * thread_k_blocks;
|
|
|
+ constexpr int m_sh_iters = ceildiv(m_sh_stage, m_sh_wr_delta);
|
|
|
+
|
|
|
+ int s_gl_stride = prob_n / 8;
|
|
|
+ constexpr int s_sh_stride = 16 * thread_n_blocks / 8;
|
|
|
+ constexpr int s_sh_stage = s_sh_stride;
|
|
|
+ int s_gl_rd_delta = s_gl_stride;
|
|
|
+
|
|
|
+ // Global A read index of current thread.
|
|
|
+ int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
|
|
|
+ (threadIdx.x % a_gl_rd_delta_o);
|
|
|
+ a_gl_rd += a_gl_rd_delta_o * slice_row;
|
|
|
+ // Shared write index of current thread.
|
|
|
+ int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) +
|
|
|
+ (threadIdx.x % a_gl_rd_delta_o);
|
|
|
+ // Shared read index.
|
|
|
+ int a_sh_rd =
|
|
|
+ a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16;
|
|
|
+ a_sh_rd += 4 * ((threadIdx.x / 32) / (thread_n_blocks / 4));
|
|
|
+
|
|
|
+ int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride_threads) +
|
|
|
+ (threadIdx.x % b_sh_stride_threads) * b_thread_vecs;
|
|
|
+ b_gl_rd += b_sh_stride * slice_col;
|
|
|
+ b_gl_rd += b_gl_rd_delta_o * slice_row;
|
|
|
+ int b_sh_wr = threadIdx.x * b_thread_vecs;
|
|
|
+ int b_sh_rd = threadIdx.x * b_thread_vecs;
|
|
|
+
|
|
|
+ int m_gl_rd = m_gl_stride * (threadIdx.x / (m_sh_stride)) +
|
|
|
+ (threadIdx.x % (m_sh_stride));
|
|
|
+ m_gl_rd += (m_sh_stride)*slice_col;
|
|
|
+ m_gl_rd += m_gl_rd_delta_o * slice_row;
|
|
|
+ int m_sh_wr = threadIdx.x;
|
|
|
+ int m_sh_rd = threadIdx.x % 16 + (threadIdx.x / 32) * 16;
|
|
|
+
|
|
|
+ int s_gl_rd;
|
|
|
+ if constexpr (group_blocks == -1) {
|
|
|
+ s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
|
|
|
+ } else {
|
|
|
+ s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
|
|
|
+ s_sh_stride * slice_col + threadIdx.x;
|
|
|
+ }
|
|
|
+
|
|
|
+ int s_sh_wr = threadIdx.x;
|
|
|
+ int s_sh_rd;
|
|
|
+ // We use a different scale layout for grouped and column-wise quantization as
|
|
|
+ // we scale a `half2` tile in column-major layout in the former and in
|
|
|
+ // row-major in the latter case.
|
|
|
+ if (group_blocks != -1) {
|
|
|
+ s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
|
|
+ (threadIdx.x % 32) / 4;
|
|
|
+ } else {
|
|
|
+ s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
|
|
+ (threadIdx.x % 32) / 4;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Precompute which thread should not read memory in which iterations; this is
|
|
|
+ // needed if there are more threads than required for a certain tilesize or
|
|
|
+ // when the batchsize is not a multiple of 16.
|
|
|
+ bool a_sh_wr_pred[a_sh_wr_iters];
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < a_sh_wr_iters; i++) {
|
|
|
+ a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m;
|
|
|
+ }
|
|
|
+ bool s_sh_wr_pred = threadIdx.x < s_sh_stride;
|
|
|
+
|
|
|
+ // To ensure that writing and reading A tiles to/from shared memory, the
|
|
|
+ // latter in fragment format, is fully bank conflict free, we need to use a
|
|
|
+ // rather fancy XOR-based layout. The key here is that neither reads nor
|
|
|
+ // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the
|
|
|
+ // same shared memory banks. Further, it seems (based on NSight-Compute) that
|
|
|
+ // each warp must also write a consecutive memory segment?
|
|
|
+ auto transform_a = [&](int i) {
|
|
|
+ int row = i / a_gl_rd_delta_o;
|
|
|
+ return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row;
|
|
|
+ };
|
|
|
+ // Since the computation of this remapping is non-trivial and, due to our main
|
|
|
+ // loop unrolls, all shared memory accesses are static, we simply precompute
|
|
|
+ // both transformed reads and writes.
|
|
|
+ int a_sh_wr_trans[a_sh_wr_iters];
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < a_sh_wr_iters; i++)
|
|
|
+ a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr);
|
|
|
+ int a_sh_rd_trans[2][b_sh_wr_iters][thread_m_blocks];
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < b_sh_wr_iters; i++) {
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < thread_m_blocks; j++) {
|
|
|
+ a_sh_rd_trans[0][i][j] =
|
|
|
+ transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd);
|
|
|
+ a_sh_rd_trans[1][i][j] =
|
|
|
+ transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd + 2);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Since B-accesses have non-constant stride they have to be computed at
|
|
|
+ // runtime; we break dependencies between subsequent accesses with a tile by
|
|
|
+ // maintining multiple pointers (we have enough registers), a tiny
|
|
|
+ // optimization.
|
|
|
+ const int4 *B_ptr[b_sh_wr_iters];
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < b_sh_wr_iters; i++)
|
|
|
+ B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd;
|
|
|
+
|
|
|
+ bool m_sh_wr_pred = threadIdx.x < m_sh_wr_delta;
|
|
|
+ const int4 *meta_ptr[m_sh_iters];
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < m_sh_iters; i++)
|
|
|
+ meta_ptr[i] = meta + m_gl_rd_delta_i * i + m_gl_rd;
|
|
|
+
|
|
|
+ extern __shared__ int4 sh[];
|
|
|
+ // Shared memory storage for global fetch pipelines.
|
|
|
+ int4 *sh_a = sh;
|
|
|
+ int4 *sh_b = sh_a + (stages * a_sh_stage);
|
|
|
+ int4 *sh_s = sh_b + (stages * b_sh_stage);
|
|
|
+ int4 *sh_m = sh_s + (stages * s_sh_stage);
|
|
|
+ // Register storage for double buffer of shared memory reads.
|
|
|
+ FragA frag_a[2][thread_m_blocks][2];
|
|
|
+ I4 frag_b_quant[2][b_thread_vecs];
|
|
|
+ FragM frag_m[2][2];
|
|
|
+ FragC frag_c[thread_m_blocks][4][2];
|
|
|
+ FragS frag_s[2][4];
|
|
|
+
|
|
|
+ // Zero accumulators.
|
|
|
+ auto zero_accums = [&]() {
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++)
|
|
|
+ reinterpret_cast<float *>(frag_c)[i] = 0;
|
|
|
+ };
|
|
|
+
|
|
|
+ // Asynchronously fetch the next A, B and s tile from global to the next
|
|
|
+ // shared memory pipeline location.
|
|
|
+ auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) {
|
|
|
+ if (pred) {
|
|
|
+ int4 *sh_a_stage = sh_a + a_sh_stage * pipe;
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < a_sh_wr_iters; i++) {
|
|
|
+ cp_async4_pred(
|
|
|
+ &sh_a_stage[a_sh_wr_trans[i]],
|
|
|
+ &A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off],
|
|
|
+ a_sh_wr_pred[i]);
|
|
|
+ }
|
|
|
+ int4 *sh_b_stage = sh_b + b_sh_stage * pipe;
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < b_sh_wr_iters; i++) {
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < b_thread_vecs; j++) {
|
|
|
+ cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr + j],
|
|
|
+ B_ptr[i] + j);
|
|
|
+ }
|
|
|
+ B_ptr[i] += b_gl_rd_delta_o;
|
|
|
+ }
|
|
|
+ int4 *sh_meta_stage = sh_m + m_sh_stage * pipe;
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < m_sh_iters; i++) {
|
|
|
+ if (m_sh_wr_pred)
|
|
|
+ cp_async4(&sh_meta_stage[m_sh_wr_delta * i + m_sh_wr],
|
|
|
+ meta_ptr[i]);
|
|
|
+ meta_ptr[i] += m_gl_rd_delta_o;
|
|
|
+ }
|
|
|
+ // Only fetch scales if this tile starts a new group
|
|
|
+ if (group_blocks != -1 && pipe % (group_blocks / thread_k_blocks) == 0) {
|
|
|
+ int4 *sh_s_stage = sh_s + s_sh_stage * pipe;
|
|
|
+ if (s_sh_wr_pred)
|
|
|
+ cp_async4(&sh_s_stage[s_sh_wr], &s[s_gl_rd]);
|
|
|
+ s_gl_rd += s_gl_rd_delta;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Insert a fence even when we are winding down the pipeline to ensure that
|
|
|
+ // waiting is also correct at this point.
|
|
|
+ cp_async_fence();
|
|
|
+ };
|
|
|
+
|
|
|
+ // Wait until the next thread tile has been loaded to shared memory.
|
|
|
+ auto wait_for_stage = [&]() {
|
|
|
+ // We only have `stages - 2` active fetches since we are double buffering
|
|
|
+ // and can only issue the next fetch when it is guaranteed that the previous
|
|
|
+ // shared memory load is fully complete (as it may otherwise be
|
|
|
+ // overwritten).
|
|
|
+ cp_async_wait<stages - 2>();
|
|
|
+ __syncthreads();
|
|
|
+ };
|
|
|
+
|
|
|
+ // Load the next sub-tile from the current location in the shared memory pipe
|
|
|
+ // into the current register buffer.
|
|
|
+ auto fetch_to_registers = [&](int k, int pipe) {
|
|
|
+ // It may seem inefficient that we reload the groups for every sub-tile;
|
|
|
+ // however, this does not seem to be a significant bottleneck, while some
|
|
|
+ // theoretically better attempts have lead to bad instruction ordering by
|
|
|
+ // the compiler and correspondingly a noticeable drop in performance.
|
|
|
+ if (group_blocks != -1) {
|
|
|
+ int4 *sh_s_stage =
|
|
|
+ sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) *
|
|
|
+ (pipe / (group_blocks / thread_k_blocks)));
|
|
|
+ reinterpret_cast<int4 *>(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd];
|
|
|
+ }
|
|
|
+ int4 *sh_a_stage = sh_a + a_sh_stage * pipe;
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < thread_m_blocks; i++) {
|
|
|
+ ldsm4(frag_a[k % 2][i][0],
|
|
|
+ &sh_a_stage[a_sh_rd_trans[0][k % b_sh_wr_iters][i]]);
|
|
|
+ ldsm4(frag_a[k % 2][i][1],
|
|
|
+ &sh_a_stage[a_sh_rd_trans[1][k % b_sh_wr_iters][i]]);
|
|
|
+ }
|
|
|
+
|
|
|
+ int4 *sh_b_stage = sh_b + b_sh_stage * pipe;
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < b_thread_vecs; i++) {
|
|
|
+ frag_b_quant[k % 2][i] = *reinterpret_cast<I4 *>(
|
|
|
+ &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd + i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Load meta with ldsm4
|
|
|
+ int4 *sh_m_stage = sh_m + m_sh_stage * pipe;
|
|
|
+ ldsm4_m(frag_m[k % 2][0],
|
|
|
+ &sh_m_stage[m_sh_rd_delta * (k % m_sh_iters) + m_sh_rd]);
|
|
|
+ };
|
|
|
+
|
|
|
+ // Execute the actual tensor core matmul of a sub-tile.
|
|
|
+ auto matmul = [&](int k) {
|
|
|
+// We have the m dimension as the inner loop in order to encourage overlapping
|
|
|
+// dequantization and matmul operations.
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < 4; j++) {
|
|
|
+ FragB frag_b0;
|
|
|
+ FragB frag_b1;
|
|
|
+
|
|
|
+ if constexpr (num_bits == 4) {
|
|
|
+ int b_quant = frag_b_quant[k % 2][0][j];
|
|
|
+ int b_quant_shift = b_quant >> 8;
|
|
|
+
|
|
|
+ frag_b0 = dequant_4bit(b_quant);
|
|
|
+ frag_b1 = dequant_4bit(b_quant_shift);
|
|
|
+
|
|
|
+ } else {
|
|
|
+ int *frag_b_quant_ptr = reinterpret_cast<int *>(frag_b_quant[k % 2]);
|
|
|
+ int b_quant_0 = frag_b_quant_ptr[j * 2 + 0];
|
|
|
+ int b_quant_1 = frag_b_quant_ptr[j * 2 + 1];
|
|
|
+
|
|
|
+ frag_b0 = dequant_8bit(b_quant_0);
|
|
|
+ frag_b1 = dequant_8bit(b_quant_1);
|
|
|
+ }
|
|
|
+
|
|
|
+ // If there are no groups, we can just scale the final output once and can
|
|
|
+ // avoid doing so for each weight.
|
|
|
+ if constexpr (group_blocks != -1) {
|
|
|
+ scale(frag_b0, frag_s[k % 2][j], 0);
|
|
|
+ }
|
|
|
+ if constexpr (group_blocks != -1) {
|
|
|
+ scale(frag_b1, frag_s[k % 2][j], 1);
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < thread_m_blocks; i++) {
|
|
|
+ mma_sp(frag_b0, frag_b1, frag_a[k % 2][i][0], frag_c[i][j][0],
|
|
|
+ frag_m[k % 2][j / 2], j % 2);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ // Since we slice across the k dimension of a tile in order to increase the
|
|
|
+ // number of warps while keeping the n dimension of a tile reasonable, we have
|
|
|
+ // multiple warps that accumulate their partial sums of the same output
|
|
|
+ // location; which we have to reduce over in the end. We do in shared memory.
|
|
|
+ auto thread_block_reduce = [&]() {
|
|
|
+ constexpr int red_off = threads / b_sh_stride_threads / 2;
|
|
|
+ if (red_off >= 1) {
|
|
|
+ int red_idx = threadIdx.x / b_sh_stride_threads;
|
|
|
+ constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2;
|
|
|
+ constexpr int red_sh_delta = b_sh_stride_threads;
|
|
|
+ int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) +
|
|
|
+ (threadIdx.x % b_sh_stride_threads);
|
|
|
+
|
|
|
+// Parallel logarithmic shared memory reduction. We make sure to avoid any
|
|
|
+// unnecessary read or write iterations, e.g., for two warps we write only once
|
|
|
+// by warp 1 and read only once by warp 0.
|
|
|
+#pragma unroll
|
|
|
+ for (int m_block = 0; m_block < thread_m_blocks; m_block++) {
|
|
|
+#pragma unroll
|
|
|
+ for (int i = red_off; i > 0; i /= 2) {
|
|
|
+ if (i <= red_idx && red_idx < 2 * i) {
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < 4 * 2; j++) {
|
|
|
+ int red_sh_wr =
|
|
|
+ red_sh_delta * j + (red_sh_rd - red_sh_stride * i);
|
|
|
+ if (i < red_off) {
|
|
|
+ float *c_rd = reinterpret_cast<float *>(
|
|
|
+ &sh[red_sh_delta * j + red_sh_rd]);
|
|
|
+ float *c_wr = reinterpret_cast<float *>(&sh[red_sh_wr]);
|
|
|
+#pragma unroll
|
|
|
+ for (int k = 0; k < 4; k++)
|
|
|
+ reinterpret_cast<FragC *>(frag_c)[4 * 2 * m_block + j][k] +=
|
|
|
+ c_rd[k] + c_wr[k];
|
|
|
+ }
|
|
|
+ sh[red_sh_wr] =
|
|
|
+ reinterpret_cast<int4 *>(&frag_c)[4 * 2 * m_block + j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ __syncthreads();
|
|
|
+ }
|
|
|
+ if (red_idx == 0) {
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < 4 * 2; i++) {
|
|
|
+ float *c_rd =
|
|
|
+ reinterpret_cast<float *>(&sh[red_sh_delta * i + red_sh_rd]);
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < 4; j++)
|
|
|
+ reinterpret_cast<FragC *>(frag_c)[4 * 2 * m_block + i][j] +=
|
|
|
+ c_rd[j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ __syncthreads();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ // Since multiple threadblocks may process parts of the same column slice, we
|
|
|
+ // finally have to globally reduce over the results. As the striped partitioning
|
|
|
+ // minimizes the number of such reductions and our outputs are usually rather
|
|
|
+ // small, we perform this reduction serially in L2 cache.
|
|
|
+ auto global_reduce = [&](bool first = false, bool last = false) {
|
|
|
+ // We are very careful here to reduce directly in the output buffer to
|
|
|
+ // maximize L2 cache utilization in this step. To do this, we write out
|
|
|
+ // results in FP16 (but still reduce with FP32 compute).
|
|
|
+ constexpr int active_threads = 32 * thread_n_blocks / 4;
|
|
|
+ if (threadIdx.x < active_threads) {
|
|
|
+ int c_gl_stride = prob_n / 8;
|
|
|
+ int c_gl_wr_delta_o = 2 * 4 * c_gl_stride;
|
|
|
+ int c_gl_wr_delta_i =
|
|
|
+ c_gl_stride; // 8 threads (e.g., 0,4,8,12,16,20,24,28)
|
|
|
+ int c_gl_wr = 2 * c_gl_stride * (threadIdx.x % 4) +
|
|
|
+ 8 * (threadIdx.x / 32) + (threadIdx.x % 32) / 4;
|
|
|
+ c_gl_wr += (2 * thread_n_blocks) * slice_col;
|
|
|
+ constexpr int c_sh_wr_delta = active_threads;
|
|
|
+ int c_sh_wr = threadIdx.x;
|
|
|
+
|
|
|
+ int col = 2 * ((threadIdx.x % 32) % 4);
|
|
|
+
|
|
|
+ if (!first) {
|
|
|
+// Interestingly, doing direct global accesses here really seems to mess up the
|
|
|
+// compiler and lead to slowdowns, hence we also use async-copies even though
|
|
|
+// these fetches are not actually asynchronous.
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < thread_m_blocks * 4; i++) {
|
|
|
+ cp_async4_pred(&sh[c_sh_wr + c_sh_wr_delta * i],
|
|
|
+ &C[c_gl_wr + c_gl_wr_delta_o * (i / 2) +
|
|
|
+ c_gl_wr_delta_i * (i % 2)],
|
|
|
+ i < (thread_m_blocks - 1) * 4 ||
|
|
|
+ 8 * (i / 2) + col + (i % 2) < prob_m);
|
|
|
+ }
|
|
|
+ cp_async_fence();
|
|
|
+ cp_async_wait<0>();
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < thread_m_blocks * 4; i++) {
|
|
|
+ if (i < (thread_m_blocks - 1) * 4 ||
|
|
|
+ 8 * (i / 2) + col + (i % 2) < prob_m) {
|
|
|
+ if (!first) {
|
|
|
+ int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta];
|
|
|
+#pragma unroll
|
|
|
+ for (int j2 = 0; j2 < 2; j2++) {
|
|
|
+#pragma unroll
|
|
|
+ for (int j1 = 0; j1 < 4; j1++) {
|
|
|
+ reinterpret_cast<float *>(
|
|
|
+ &frag_c)[4 * 2 * 4 * (i / 4) + 8 * j1 + 2 * j2 +
|
|
|
+ 4 * ((i % 4) / 2) + i % 2] +=
|
|
|
+ __half2float(
|
|
|
+ reinterpret_cast<__half *>(&c_red)[(j2 * 4 + j1)]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (!last) {
|
|
|
+ int4 c;
|
|
|
+#pragma unroll
|
|
|
+ for (int j2 = 0; j2 < 2; j2++) {
|
|
|
+#pragma unroll
|
|
|
+ for (int j1 = 0; j1 < 4; j1++) {
|
|
|
+ reinterpret_cast<__half *>(&c)[(j2 * 4 + j1)] =
|
|
|
+ __float2half(reinterpret_cast<float *>(
|
|
|
+ &frag_c)[4 * 2 * 4 * (i / 4) + 8 * j1 + 2 * j2 +
|
|
|
+ 4 * ((i % 4) / 2) + i % 2]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] =
|
|
|
+ c;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ // Write out the reduce final result in the correct layout. We only actually
|
|
|
+ // reshuffle matrix fragments in this step, the reduction above is performed
|
|
|
+ // in fragment layout.
|
|
|
+ auto write_result = [&]() {
|
|
|
+ int c_gl_stride = prob_n / 8;
|
|
|
+
|
|
|
+ constexpr int c_sh_stride = 2 * thread_n_blocks; // RLC:
|
|
|
+ constexpr int c_sh_stride_2 = 2 * c_sh_stride + 2; // RLC:
|
|
|
+ constexpr int c_sh_stride_3 = 2 * (2 * thread_n_blocks) + 2; // RLC:
|
|
|
+
|
|
|
+ int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
|
|
|
+
|
|
|
+ int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) +
|
|
|
+ (threadIdx.x % (2 * thread_n_blocks));
|
|
|
+ c_gl_wr += (2 * thread_n_blocks) * slice_col;
|
|
|
+
|
|
|
+ int c_sh_wr = c_sh_stride_2 * ((threadIdx.x % 32) % 4) +
|
|
|
+ ((threadIdx.x % 32) / 4); // RLC:
|
|
|
+ c_sh_wr += 8 * (threadIdx.x / 32); // 128/4(half4)
|
|
|
+
|
|
|
+ constexpr int c_sh_rd_delta =
|
|
|
+ c_sh_stride_3 * (threads / (2 * 2 * thread_n_blocks)); // RLC:
|
|
|
+ int c_sh_rd = c_sh_stride_3 * (threadIdx.x / (2 * 2 * thread_n_blocks)) +
|
|
|
+ (threadIdx.x % (2 * 2 * thread_n_blocks));
|
|
|
+
|
|
|
+ int c_gl_wr_end = c_gl_stride * prob_m;
|
|
|
+
|
|
|
+ auto write = [&](int idx, float c0, float c1, float c2, float c3, FragS &s0,
|
|
|
+ float c4, float c5, float c6, float c7, FragS &s1) {
|
|
|
+ uint2 res[2];
|
|
|
+ res[0] = to_half4(c0, c1, c2, c3);
|
|
|
+ res[1] = to_half4(c4, c5, c6, c7);
|
|
|
+ half2 *tmp = (half2 *)&res;
|
|
|
+ // for per-column quantization we finally apply the scale here
|
|
|
+ if constexpr (group_blocks == -1 && num_bits == 4) {
|
|
|
+ tmp[0] = __hmul2(tmp[0], s0[0]);
|
|
|
+ tmp[1] = __hmul2(tmp[1], s0[1]);
|
|
|
+ tmp[2] = __hmul2(tmp[2], s1[0]);
|
|
|
+ tmp[3] = __hmul2(tmp[3], s1[1]);
|
|
|
+ }
|
|
|
+ ((int4 *)sh)[idx] = *((int4 *)&res[0]);
|
|
|
+ };
|
|
|
+
|
|
|
+ // RLC: only warp 0 and 1 baseline example
|
|
|
+ if (threadIdx.x / 32 < thread_n_blocks / 4) {
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < thread_m_blocks; i++) {
|
|
|
+ int wr = c_sh_wr;
|
|
|
+ write(wr, frag_c[i][0][0][0], frag_c[i][1][0][0], frag_c[i][2][0][0],
|
|
|
+ frag_c[i][3][0][0], frag_s[0][0], frag_c[i][0][0][2],
|
|
|
+ frag_c[i][1][0][2], frag_c[i][2][0][2], frag_c[i][3][0][2],
|
|
|
+ frag_s[0][2]);
|
|
|
+ write(wr + c_sh_stride, frag_c[i][0][0][1], frag_c[i][1][0][1],
|
|
|
+ frag_c[i][2][0][1], frag_c[i][3][0][1], frag_s[0][0],
|
|
|
+ frag_c[i][0][0][3], frag_c[i][1][0][3], frag_c[i][2][0][3],
|
|
|
+ frag_c[i][3][0][3], frag_s[0][2]);
|
|
|
+ write(wr + 4 * c_sh_stride_2, frag_c[i][0][1][0], frag_c[i][1][1][0],
|
|
|
+ frag_c[i][2][1][0], frag_c[i][3][1][0], frag_s[0][0],
|
|
|
+ frag_c[i][0][1][2], frag_c[i][1][1][2], frag_c[i][2][1][2],
|
|
|
+ frag_c[i][3][1][2], frag_s[0][2]);
|
|
|
+ write(wr + 4 * c_sh_stride_2 + c_sh_stride, frag_c[i][0][1][1],
|
|
|
+ frag_c[i][1][1][1], frag_c[i][2][1][1], frag_c[i][3][1][1],
|
|
|
+ frag_s[0][0], frag_c[i][0][1][3], frag_c[i][1][1][3],
|
|
|
+ frag_c[i][2][1][3], frag_c[i][3][1][3], frag_s[0][2]);
|
|
|
+
|
|
|
+ c_sh_wr += 8 * c_sh_stride_2;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ __syncthreads();
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0;
|
|
|
+ i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks));
|
|
|
+ i++) {
|
|
|
+ if (c_gl_wr < c_gl_wr_end) {
|
|
|
+ C[c_gl_wr] = sh[c_sh_rd];
|
|
|
+ c_gl_wr += c_gl_wr_delta;
|
|
|
+ c_sh_rd += c_sh_rd_delta;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ // Start global fetch and register load pipelines.
|
|
|
+ auto start_pipes = [&]() {
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < stages - 1; i++)
|
|
|
+ fetch_to_shared(i, i, i < slice_iters);
|
|
|
+ zero_accums();
|
|
|
+ wait_for_stage();
|
|
|
+ fetch_to_registers(0, 0);
|
|
|
+ a_gl_rd += a_gl_rd_delta_o * (stages - 1);
|
|
|
+ };
|
|
|
+ start_pipes();
|
|
|
+
|
|
|
+ // Main loop.
|
|
|
+ while (slice_iters) {
|
|
|
+// We unroll over both the global fetch and the register load pipeline to ensure
|
|
|
+// all shared memory accesses are static. Note that both pipelines have even
|
|
|
+// length meaning that the next iteration will always start at index 0.
|
|
|
+#pragma unroll
|
|
|
+ for (int pipe = 0; pipe < stages;) {
|
|
|
+ fetch_to_shared((pipe + stages - 1) % stages, pipe,
|
|
|
+ slice_iters >= stages);
|
|
|
+ wait_for_stage();
|
|
|
+
|
|
|
+ fetch_to_registers(pipe + 1, (pipe + 1) % stages);
|
|
|
+ matmul(pipe);
|
|
|
+
|
|
|
+ pipe++;
|
|
|
+ slice_iters--;
|
|
|
+ if (slice_iters == 0)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ a_gl_rd += a_gl_rd_delta_o * stages;
|
|
|
+
|
|
|
+ // Process results and, if necessary, proceed to the next column slice.
|
|
|
+ // While this pattern may not be the most readable, other ways of writing
|
|
|
+ // the loop seemed to noticeably worse performance after compilation.
|
|
|
+ if (slice_iters == 0) {
|
|
|
+ cp_async_wait<0>();
|
|
|
+ bool last = slice_idx == slice_count - 1;
|
|
|
+ // For per-column scales, we only fetch them here in the final step before
|
|
|
+ // write-out
|
|
|
+ if constexpr (group_blocks == -1) {
|
|
|
+ if constexpr (num_bits == 8) {
|
|
|
+ if (s_sh_wr_pred)
|
|
|
+ cp_async4(&sh_s[s_sh_wr], &s[s_gl_rd]);
|
|
|
+ cp_async_fence();
|
|
|
+ } else {
|
|
|
+ if (last) {
|
|
|
+ if (s_sh_wr_pred)
|
|
|
+ cp_async4(&sh_s[s_sh_wr], &s[s_gl_rd]);
|
|
|
+ cp_async_fence();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ thread_block_reduce();
|
|
|
+
|
|
|
+ if constexpr (group_blocks == -1) {
|
|
|
+ if constexpr (num_bits == 8) {
|
|
|
+ cp_async_wait<0>();
|
|
|
+ __syncthreads();
|
|
|
+ if (threadIdx.x / 32 < thread_n_blocks / 4) {
|
|
|
+ *(float4 *)(frag_s) = *(float4 *)(&sh_s[s_sh_rd]);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if (last) {
|
|
|
+ cp_async_wait<0>();
|
|
|
+ __syncthreads();
|
|
|
+ if (threadIdx.x / 32 < thread_n_blocks / 4) {
|
|
|
+ *(float4 *)(frag_s) = *(float4 *)(&sh_s[s_sh_rd]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // For 8-bit channelwise, we apply the scale before the global reduction
|
|
|
+ // that converts the fp32 results to fp16 (so that we avoid possible
|
|
|
+ // overflow in fp16)
|
|
|
+ if constexpr (group_blocks == -1 && num_bits == 8) {
|
|
|
+ if (threadIdx.x / 32 < thread_n_blocks / 4) {
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < thread_m_blocks; i++) {
|
|
|
+ scale_floats(&frag_c[i][0][0][0], &frag_c[i][1][0][0],
|
|
|
+ &frag_c[i][2][0][0], &frag_c[i][3][0][0], frag_s[0][0],
|
|
|
+ &frag_c[i][0][0][2], &frag_c[i][1][0][2],
|
|
|
+ &frag_c[i][2][0][2], &frag_c[i][3][0][2],
|
|
|
+ frag_s[0][2]);
|
|
|
+
|
|
|
+ scale_floats(&frag_c[i][0][0][1], &frag_c[i][1][0][1],
|
|
|
+ &frag_c[i][2][0][1], &frag_c[i][3][0][1], frag_s[0][0],
|
|
|
+ &frag_c[i][0][0][3], &frag_c[i][1][0][3],
|
|
|
+ &frag_c[i][2][0][3], &frag_c[i][3][0][3],
|
|
|
+ frag_s[0][2]);
|
|
|
+
|
|
|
+ scale_floats(&frag_c[i][0][1][0], &frag_c[i][1][1][0],
|
|
|
+ &frag_c[i][2][1][0], &frag_c[i][3][1][0], frag_s[0][0],
|
|
|
+ &frag_c[i][0][1][2], &frag_c[i][1][1][2],
|
|
|
+ &frag_c[i][2][1][2], &frag_c[i][3][1][2],
|
|
|
+ frag_s[0][2]);
|
|
|
+
|
|
|
+ scale_floats(&frag_c[i][0][1][1], &frag_c[i][1][1][1],
|
|
|
+ &frag_c[i][2][1][1], &frag_c[i][3][1][1], frag_s[0][0],
|
|
|
+ &frag_c[i][0][1][3], &frag_c[i][1][1][3],
|
|
|
+ &frag_c[i][2][1][3], &frag_c[i][3][1][3],
|
|
|
+ frag_s[0][2]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (slice_count > 1) { // only globally reduce if there is more than one
|
|
|
+ // block in a slice
|
|
|
+ barrier_acquire(&locks[slice_col], slice_idx);
|
|
|
+ global_reduce(slice_idx == 0, last);
|
|
|
+ barrier_release(&locks[slice_col], last);
|
|
|
+ }
|
|
|
+ if (last) // only the last block in a slice actually writes the result
|
|
|
+ write_result();
|
|
|
+
|
|
|
+ slice_row = 0;
|
|
|
+ slice_col_par++;
|
|
|
+ slice_col++;
|
|
|
+ init_slice();
|
|
|
+ if (slice_iters) {
|
|
|
+ a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
|
|
|
+ (threadIdx.x % a_gl_rd_delta_o);
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < b_sh_wr_iters; i++)
|
|
|
+ B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles;
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < m_sh_iters; i++)
|
|
|
+ meta_ptr[i] += (m_sh_stride)-m_gl_rd_delta_o * k_tiles;
|
|
|
+ if (slice_col == 0) {
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < b_sh_wr_iters; i++)
|
|
|
+ B_ptr[i] -= b_gl_stride;
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < m_sh_iters; i++)
|
|
|
+ meta_ptr[i] -= m_gl_stride;
|
|
|
+ }
|
|
|
+ s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
|
|
|
+ start_pipes();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+#define CALL_IF_2_4(NUM_BITS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
|
|
|
+ THREAD_K_BLOCKS, GROUP_BLOCKS) \
|
|
|
+ else if (num_bits == NUM_BITS && thread_m_blocks == THREAD_M_BLOCKS && \
|
|
|
+ thread_n_blocks == THREAD_N_BLOCKS && \
|
|
|
+ thread_k_blocks == THREAD_K_BLOCKS && \
|
|
|
+ group_blocks == GROUP_BLOCKS) { \
|
|
|
+ cudaFuncSetAttribute( \
|
|
|
+ Marlin_24<NUM_BITS, THREADS, THREAD_N_BLOCKS, THREAD_M_BLOCKS, \
|
|
|
+ THREAD_K_BLOCKS, STAGES, GROUP_BLOCKS>, \
|
|
|
+ cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
|
|
|
+ Marlin_24<NUM_BITS, THREADS, THREAD_N_BLOCKS, THREAD_M_BLOCKS, \
|
|
|
+ THREAD_K_BLOCKS, STAGES, GROUP_BLOCKS> \
|
|
|
+ <<<blocks, THREADS, max_shared_mem, stream>>>(A_ptr, B_ptr, meta_ptr, \
|
|
|
+ C_ptr, s_ptr, prob_n, \
|
|
|
+ prob_m, prob_k, locks); \
|
|
|
+ }
|
|
|
+
|
|
|
+void marlin_cuda_2_4(const void *A, const void *B, const void *meta, void *C,
|
|
|
+ void *s, int prob_m, int prob_n, int prob_k,
|
|
|
+ void *workspace, int num_bits, int groupsize = -1,
|
|
|
+ int dev = 0, cudaStream_t stream = 0, int thread_k = -1,
|
|
|
+ int thread_m = -1, int sms = -1, int max_par = 16) {
|
|
|
+ int tot_n = prob_n;
|
|
|
+ int tot_n_blocks = ceildiv(tot_n, 16);
|
|
|
+ int pad = 16 * tot_n_blocks - tot_n;
|
|
|
+
|
|
|
+ if (sms == -1) {
|
|
|
+ cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
|
|
|
+ }
|
|
|
+ TORCH_CHECK(sms > 0);
|
|
|
+
|
|
|
+ int max_shared_mem = 0;
|
|
|
+ cudaDeviceGetAttribute(&max_shared_mem,
|
|
|
+ cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
|
|
|
+ TORCH_CHECK(max_shared_mem > 0);
|
|
|
+
|
|
|
+ if (thread_k == -1 || thread_m == -1) {
|
|
|
+ if (prob_n <= 16) {
|
|
|
+ // For small batchizes, better partitioningif is slightly more important than
|
|
|
+ // better compute utilization
|
|
|
+ thread_k = 128;
|
|
|
+ thread_m = 128;
|
|
|
+ } else {
|
|
|
+ thread_k = 64;
|
|
|
+ thread_m = 256;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ int thread_k_blocks = thread_k / 32; // 2:4 version with m16n8k32 instruction
|
|
|
+ int thread_m_blocks = thread_m / 16;
|
|
|
+ int group_blocks = (groupsize == -1) ? -1 : groupsize / 16;
|
|
|
+ int blocks = sms;
|
|
|
+
|
|
|
+ TORCH_CHECK(prob_m % thread_m == 0, "prob_m = ", prob_m,
|
|
|
+ " is not divisible by thread_m = ", thread_m);
|
|
|
+ TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
|
|
|
+ " is not divisible by thread_k = ", thread_k);
|
|
|
+ if (group_blocks != -1) {
|
|
|
+ TORCH_CHECK((prob_k / 2) % group_blocks == 0, "prob_k/2 = ", prob_k / 2,
|
|
|
+ " is not divisible by group_blocks = ", group_blocks);
|
|
|
+ }
|
|
|
+
|
|
|
+ TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
|
|
|
+ ", ", prob_n, ", ", prob_k, "]");
|
|
|
+
|
|
|
+ const int4 *A_ptr = (const int4 *)A;
|
|
|
+ const int4 *B_ptr = (const int4 *)B;
|
|
|
+ const int4 *meta_ptr = (const int4 *)meta;
|
|
|
+ int4 *C_ptr = (int4 *)C;
|
|
|
+ const int4 *s_ptr = (const int4 *)s;
|
|
|
+
|
|
|
+ int *locks = (int *)workspace;
|
|
|
+ for (int i = 0; i < tot_n_blocks; i += 4) {
|
|
|
+ int thread_n_blocks = tot_n_blocks - i;
|
|
|
+ prob_n = tot_n - 16 * i;
|
|
|
+ int par = 1;
|
|
|
+ if (thread_n_blocks > 4) {
|
|
|
+ // Note that parallel > 1 currently only works for inputs without any
|
|
|
+ // padding
|
|
|
+ par = (16 * thread_n_blocks - pad) / 64;
|
|
|
+ if (par > max_par)
|
|
|
+ par = max_par;
|
|
|
+ prob_n = 64 * par;
|
|
|
+ i += 4 * (par - 1);
|
|
|
+ thread_n_blocks = 4;
|
|
|
+ }
|
|
|
+
|
|
|
+ // For compilation speed, we only define the kernel configurations that have
|
|
|
+ // seemed useful (in terms of performance) in our testing, however many more
|
|
|
+ // are, in principle, possible.
|
|
|
+
|
|
|
+ // the false is start of the CALL_IF macros
|
|
|
+ if (false) {
|
|
|
+ } // BMxBNxBK, group
|
|
|
+ // 4-bit
|
|
|
+ CALL_IF_2_4(4, 8, 1, 4, -1) // e.g., 16x128x128
|
|
|
+ CALL_IF_2_4(4, 8, 1, 4, 4) // e.g., 16x128x128, 64
|
|
|
+ CALL_IF_2_4(4, 16, 1, 2, -1) // e.g., 16x256x64
|
|
|
+ CALL_IF_2_4(4, 16, 1, 2, 4) // e.g., 16x256x64, 64
|
|
|
+ CALL_IF_2_4(4, 16, 2, 2, -1) // e.g.. 32x256x64
|
|
|
+ CALL_IF_2_4(4, 16, 2, 2, 4)
|
|
|
+ CALL_IF_2_4(4, 16, 3, 2, -1)
|
|
|
+ CALL_IF_2_4(4, 16, 3, 2, 4)
|
|
|
+ CALL_IF_2_4(4, 16, 4, 2, -1)
|
|
|
+ CALL_IF_2_4(4, 16, 4, 2, 4)
|
|
|
+
|
|
|
+ // 8-bit
|
|
|
+ CALL_IF_2_4(8, 8, 1, 4, -1) // e.g., 16x128x128
|
|
|
+ CALL_IF_2_4(8, 8, 1, 4, 4) // e.g., 16x128x128, 64
|
|
|
+ CALL_IF_2_4(8, 16, 1, 2, -1) // e.g., 16x256x64
|
|
|
+ CALL_IF_2_4(8, 16, 1, 2, 4) // e.g., 16x256x64, 64
|
|
|
+ CALL_IF_2_4(8, 16, 2, 2, -1) // e.g.. 32x256x64
|
|
|
+ CALL_IF_2_4(8, 16, 2, 2, 4)
|
|
|
+ CALL_IF_2_4(8, 16, 3, 2, -1)
|
|
|
+ CALL_IF_2_4(8, 16, 3, 2, 4)
|
|
|
+ CALL_IF_2_4(8, 16, 4, 2, -1)
|
|
|
+ CALL_IF_2_4(8, 16, 4, 2, 4)
|
|
|
+ else {
|
|
|
+ throw std::runtime_error("Unsupported shapes: MKN = [" + str(prob_m) +
|
|
|
+ ", " + str(prob_k) + ", " + str(prob_n) + "]" +
|
|
|
+ ", groupsize = " + str(groupsize) +
|
|
|
+ ", thread_m_blocks = " + str(thread_m_blocks) +
|
|
|
+ ", thread_n_blocks = " + str(thread_n_blocks) +
|
|
|
+ ", thread_k_blocks = " + str(thread_k_blocks));
|
|
|
+ }
|
|
|
+
|
|
|
+ A_ptr += 16 * thread_n_blocks * (prob_k / 8) * par;
|
|
|
+ C_ptr += 16 * thread_n_blocks * (prob_m / 8) * par;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+} // namespace marlin_24
|
|
|
+
|
|
|
+torch::Tensor gptq_marlin_24_gemm(torch::Tensor &a, torch::Tensor &b_q_weight,
|
|
|
+ torch::Tensor &b_meta,
|
|
|
+ torch::Tensor &b_scales,
|
|
|
+ torch::Tensor &workspace, int64_t num_bits,
|
|
|
+ int64_t size_m, int64_t size_n,
|
|
|
+ int64_t size_k) {
|
|
|
+ // Verify num_bits
|
|
|
+ TORCH_CHECK(num_bits == 4 || num_bits == 8,
|
|
|
+ "num_bits must be 4 or 8. Got = ", num_bits);
|
|
|
+ int pack_factor = 32 / num_bits;
|
|
|
+
|
|
|
+ // Verify M
|
|
|
+ TORCH_CHECK(size_m == a.size(0),
|
|
|
+ "Shape mismatch: a.size(0) = " + str(a.size(0)) +
|
|
|
+ ", size_m = " + str(size_m));
|
|
|
+
|
|
|
+ // Verify K
|
|
|
+ TORCH_CHECK(size_k == a.size(1),
|
|
|
+ "Shape mismatch: a.size(1) = " + str(a.size(1)) +
|
|
|
+ ", size_k = " + str(size_k));
|
|
|
+ TORCH_CHECK(size_k % marlin_24::tile_size == 0,
|
|
|
+ "size_k = " + str(size_k) + " is not divisible by tile_size = " +
|
|
|
+ str(marlin_24::tile_size));
|
|
|
+ TORCH_CHECK((size_k / marlin_24::tile_size / 2) == b_q_weight.size(0),
|
|
|
+ "Shape mismatch: b_q_weight.size(0) = " +
|
|
|
+ str(b_q_weight.size(0)) + ", size_k = " + str(size_k) +
|
|
|
+ ", tile_size = " + str(marlin_24::tile_size));
|
|
|
+
|
|
|
+ // Verify N
|
|
|
+ TORCH_CHECK(b_scales.size(1) == size_n,
|
|
|
+ "b_scales.size(1) = " + str(b_scales.size(1)) +
|
|
|
+ ", size_n = " + str(size_n));
|
|
|
+ TORCH_CHECK(
|
|
|
+ b_q_weight.size(1) % marlin_24::tile_size == 0,
|
|
|
+ "b_q_weight.size(1) = " + str(b_q_weight.size(1)) +
|
|
|
+ " is not divisible by tile_size = " + str(marlin_24::tile_size));
|
|
|
+
|
|
|
+ int actual_size_n = (b_q_weight.size(1) / marlin_24::tile_size) * pack_factor;
|
|
|
+ TORCH_CHECK(size_n == actual_size_n,
|
|
|
+ "size_n = " + str(size_n) +
|
|
|
+ ", actual_size_n = " + str(actual_size_n));
|
|
|
+
|
|
|
+ // Verify meta
|
|
|
+ TORCH_CHECK(b_meta.size(0) == size_k / 8 / 2 / 2,
|
|
|
+ "b_meta.size(0) = ", b_meta.size(0),
|
|
|
+ " is not size_k / 8 / 2 / 2 = ", size_k / 8 / 2 / 2);
|
|
|
+ TORCH_CHECK(b_meta.size(1) == size_n * 2, "b_meta.size(1) = ", b_meta.size(1),
|
|
|
+ " is not size_n * 2 = ", size_n * 2);
|
|
|
+
|
|
|
+ // Verify A device and strides
|
|
|
+ TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
|
|
|
+ TORCH_CHECK(a.is_contiguous(), "A is not contiguous");
|
|
|
+
|
|
|
+ // Verify B device and strides
|
|
|
+ TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
|
|
|
+ TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
|
|
|
+
|
|
|
+ // Verify b_meta device and strides
|
|
|
+ TORCH_CHECK(b_meta.device().is_cuda(), "b_meta is not on GPU");
|
|
|
+ TORCH_CHECK(b_meta.is_contiguous(), "b_meta is not contiguous");
|
|
|
+
|
|
|
+ // Verify scales device and strides
|
|
|
+ TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
|
|
|
+ TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");
|
|
|
+
|
|
|
+ // Alloc C matrix
|
|
|
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
|
|
|
+ auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
|
|
|
+ torch::Tensor c = torch::empty({size_m, size_n}, options);
|
|
|
+
|
|
|
+ int thread_k = -1;
|
|
|
+ int thread_m = -1;
|
|
|
+ int sms = -1;
|
|
|
+ int max_par = 16;
|
|
|
+
|
|
|
+ int groupsize = -1;
|
|
|
+ if (b_scales.size(0) > 1) {
|
|
|
+ TORCH_CHECK(size_k % b_scales.size(0) == 0,
|
|
|
+ "size_k = " + str(size_k) +
|
|
|
+ ", is not divisible by b_scales.size(0) = " +
|
|
|
+ str(b_scales.size(0)));
|
|
|
+ groupsize = size_k / b_scales.size(0);
|
|
|
+ groupsize /= 2; // Because of 24
|
|
|
+ }
|
|
|
+
|
|
|
+ // Verify groupsize
|
|
|
+ TORCH_CHECK(groupsize == -1 || groupsize == 64,
|
|
|
+ "Unexpected groupsize = " + str(groupsize));
|
|
|
+
|
|
|
+ // Verify workspace size
|
|
|
+ TORCH_CHECK(size_n % marlin_24::min_thread_n == 0,
|
|
|
+ "size_n = " + str(size_n) +
|
|
|
+ ", is not divisible by min_thread_n = " +
|
|
|
+ str(marlin_24::min_thread_n));
|
|
|
+ int min_workspace_size =
|
|
|
+ (size_n / marlin_24::min_thread_n) * marlin_24::max_par;
|
|
|
+ TORCH_CHECK(workspace.numel() >= min_workspace_size,
|
|
|
+ "workspace.numel = " + str(workspace.numel()) +
|
|
|
+ " is below min_workspace_size = " + str(min_workspace_size));
|
|
|
+
|
|
|
+ int dev = a.get_device();
|
|
|
+ marlin_24::marlin_cuda_2_4(
|
|
|
+ a.data_ptr(), b_q_weight.data_ptr(), b_meta.data_ptr(), c.data_ptr(),
|
|
|
+ b_scales.data_ptr(), size_n, size_m, size_k, workspace.data_ptr(),
|
|
|
+ num_bits, groupsize, dev, at::cuda::getCurrentCUDAStream(dev), thread_k,
|
|
|
+ thread_m, sms, max_par);
|
|
|
+
|
|
|
+ return c;
|
|
|
+}
|