|
@@ -0,0 +1,3925 @@
|
|
|
+#include <cuda_fp16.h>
|
|
|
+#include <cuda_runtime.h>
|
|
|
+
|
|
|
+#include <torch/all.h>
|
|
|
+#include <torch/python.h>
|
|
|
+#include <c10/cuda/CUDAGuard.h>
|
|
|
+
|
|
|
+
|
|
|
+#define QK_K 256
|
|
|
+#define K_QUANTS_PER_ITERATION 2
|
|
|
+#define WARP_SIZE 32
|
|
|
+#define K_SCALE_SIZE 12
|
|
|
+#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
|
|
+#define CUDA_QUANTIZE_BLOCK_SIZE 256
|
|
|
+#define GGML_CUDA_DMMV_X 32
|
|
|
+#define GGML_CUDA_MMV_Y 1
|
|
|
+
|
|
|
+
|
|
|
+// Data Structures
|
|
|
+// QK = number of values after dequantization
|
|
|
+// QR = QK / number of values before dequantization
|
|
|
+// QI = number of 32 bit integers before dequantization
|
|
|
+
|
|
|
+#define QK4_0 32
|
|
|
+#define QR4_0 2
|
|
|
+#define QI4_0 (QK4_0 / (4 * QR4_0))
|
|
|
+typedef struct {
|
|
|
+ half d; // delta
|
|
|
+ uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
|
|
+} block_q4_0;
|
|
|
+
|
|
|
+#define QK4_1 32
|
|
|
+#define QR4_1 2
|
|
|
+#define QI4_1 (QK4_1 / (4 * QR4_1))
|
|
|
+typedef struct {
|
|
|
+ half2 dm; // dm.x = delta, dm.y = min
|
|
|
+ uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
|
|
+} block_q4_1;
|
|
|
+
|
|
|
+#define QK5_0 32
|
|
|
+#define QR5_0 2
|
|
|
+#define QI5_0 (QK5_0 / (4 * QR5_0))
|
|
|
+typedef struct {
|
|
|
+ half d; // delta
|
|
|
+ uint8_t qh[4]; // 5-th bit of quants
|
|
|
+ uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
|
|
+} block_q5_0;
|
|
|
+
|
|
|
+#define QK5_1 32
|
|
|
+#define QR5_1 2
|
|
|
+#define QI5_1 (QK5_1 / (4 * QR5_1))
|
|
|
+typedef struct {
|
|
|
+ half2 dm; // dm.x = delta, dm.y = min
|
|
|
+ uint8_t qh[4]; // 5-th bit of quants
|
|
|
+ uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
|
|
+} block_q5_1;
|
|
|
+
|
|
|
+#define QK8_0 32
|
|
|
+#define QR8_0 1
|
|
|
+#define QI8_0 (QK8_0 / (4 * QR8_0))
|
|
|
+typedef struct {
|
|
|
+ half d; // delta
|
|
|
+ int8_t qs[QK8_0]; // quants
|
|
|
+} block_q8_0;
|
|
|
+
|
|
|
+#define QK8_1 32
|
|
|
+#define QR8_1 1
|
|
|
+#define QI8_1 (QK8_1 / (4 * QR8_1))
|
|
|
+typedef struct {
|
|
|
+ half2 ds; // ds.x = delta, ds.y = sum
|
|
|
+ int8_t qs[QK8_0]; // quants
|
|
|
+} block_q8_1;
|
|
|
+
|
|
|
+#define QR2_K 4
|
|
|
+#define QI2_K (QK_K / (4*QR2_K))
|
|
|
+typedef struct {
|
|
|
+ uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
|
|
+ uint8_t qs[QK_K/4]; // quants
|
|
|
+ half2 dm; // super-block scale for quantized scales/mins
|
|
|
+} block_q2_K;
|
|
|
+
|
|
|
+#define QR3_K 4
|
|
|
+#define QI3_K (QK_K / (4*QR3_K))
|
|
|
+typedef struct {
|
|
|
+ uint8_t hmask[QK_K/8]; // quants - high bit
|
|
|
+ uint8_t qs[QK_K/4]; // quants - low 2 bits
|
|
|
+ uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
|
|
|
+ half d; // super-block scale
|
|
|
+} block_q3_K;
|
|
|
+
|
|
|
+#define QR4_K 2
|
|
|
+#define QI4_K (QK_K / (4*QR4_K))
|
|
|
+typedef struct {
|
|
|
+ half2 dm; // super-block scale for quantized scales/mins
|
|
|
+ uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
|
|
|
+ uint8_t qs[QK_K/2]; // 4--bit quants
|
|
|
+} block_q4_K;
|
|
|
+
|
|
|
+#define QR5_K 2
|
|
|
+#define QI5_K (QK_K / (4*QR5_K))
|
|
|
+typedef struct {
|
|
|
+ half2 dm; // super-block scale for quantized scales/mins
|
|
|
+ uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
|
|
+ uint8_t qh[QK_K/8]; // quants, high bit
|
|
|
+ uint8_t qs[QK_K/2]; // quants, low 4 bits
|
|
|
+} block_q5_K;
|
|
|
+
|
|
|
+#define QR6_K 2
|
|
|
+#define QI6_K (QK_K / (4*QR6_K))
|
|
|
+typedef struct {
|
|
|
+ uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
|
|
+ uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
|
|
+ int8_t scales[QK_K/16]; // scales
|
|
|
+ half d; // delta
|
|
|
+} block_q6_K;
|
|
|
+
|
|
|
+#define QR2_XXS 8
|
|
|
+#define QI2_XXS (QK_K / (4*QR2_XXS))
|
|
|
+typedef struct {
|
|
|
+ half d;
|
|
|
+ uint16_t qs[QK_K/8];
|
|
|
+} block_iq2_xxs;
|
|
|
+
|
|
|
+#define QR2_XS 8
|
|
|
+#define QI2_XS (QK_K / (4*QR2_XS))
|
|
|
+typedef struct {
|
|
|
+ half d;
|
|
|
+ uint16_t qs[QK_K/8];
|
|
|
+ uint8_t scales[QK_K/32];
|
|
|
+} block_iq2_xs;
|
|
|
+
|
|
|
+static const __device__ uint64_t iq2xxs_grid[256] = {
|
|
|
+ 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
|
|
|
+ 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808,
|
|
|
+ 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819,
|
|
|
+ 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819,
|
|
|
+ 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b,
|
|
|
+ 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808,
|
|
|
+ 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08,
|
|
|
+ 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b,
|
|
|
+ 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819,
|
|
|
+ 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08,
|
|
|
+ 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808,
|
|
|
+ 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08,
|
|
|
+ 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808,
|
|
|
+ 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808,
|
|
|
+ 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919,
|
|
|
+ 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819,
|
|
|
+ 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08,
|
|
|
+ 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908,
|
|
|
+ 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819,
|
|
|
+ 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808,
|
|
|
+ 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808,
|
|
|
+ 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908,
|
|
|
+ 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808,
|
|
|
+ 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08,
|
|
|
+ 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819,
|
|
|
+ 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819,
|
|
|
+ 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819,
|
|
|
+ 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908,
|
|
|
+ 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19,
|
|
|
+ 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819,
|
|
|
+ 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b,
|
|
|
+ 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808,
|
|
|
+ 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908,
|
|
|
+ 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08,
|
|
|
+ 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08,
|
|
|
+ 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908,
|
|
|
+ 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819,
|
|
|
+ 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808,
|
|
|
+ 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808,
|
|
|
+ 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19,
|
|
|
+ 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819,
|
|
|
+ 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919,
|
|
|
+ 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b,
|
|
|
+ 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08,
|
|
|
+ 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808,
|
|
|
+ 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908,
|
|
|
+ 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b,
|
|
|
+ 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819,
|
|
|
+ 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08,
|
|
|
+ 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08,
|
|
|
+ 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808,
|
|
|
+ 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b,
|
|
|
+ 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b,
|
|
|
+ 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908,
|
|
|
+ 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819,
|
|
|
+ 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808,
|
|
|
+ 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908,
|
|
|
+ 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b,
|
|
|
+ 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808,
|
|
|
+ 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b,
|
|
|
+ 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b,
|
|
|
+ 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808,
|
|
|
+ 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19,
|
|
|
+ 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908,
|
|
|
+};
|
|
|
+
|
|
|
+static const __device__ uint64_t iq2xs_grid[512] = {
|
|
|
+ 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
|
|
|
+ 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
|
|
|
+ 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
|
|
|
+ 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
|
|
|
+ 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
|
|
|
+ 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808,
|
|
|
+ 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819,
|
|
|
+ 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819,
|
|
|
+ 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808,
|
|
|
+ 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b,
|
|
|
+ 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b,
|
|
|
+ 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908,
|
|
|
+ 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908,
|
|
|
+ 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919,
|
|
|
+ 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808,
|
|
|
+ 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919,
|
|
|
+ 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908,
|
|
|
+ 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b,
|
|
|
+ 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908,
|
|
|
+ 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08,
|
|
|
+ 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808,
|
|
|
+ 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808,
|
|
|
+ 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819,
|
|
|
+ 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908,
|
|
|
+ 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819,
|
|
|
+ 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808,
|
|
|
+ 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b,
|
|
|
+ 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819,
|
|
|
+ 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819,
|
|
|
+ 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808,
|
|
|
+ 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908,
|
|
|
+ 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19,
|
|
|
+ 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b,
|
|
|
+ 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b,
|
|
|
+ 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919,
|
|
|
+ 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808,
|
|
|
+ 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819,
|
|
|
+ 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819,
|
|
|
+ 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b,
|
|
|
+ 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908,
|
|
|
+ 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808,
|
|
|
+ 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819,
|
|
|
+ 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808,
|
|
|
+ 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919,
|
|
|
+ 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808,
|
|
|
+ 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808,
|
|
|
+ 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908,
|
|
|
+ 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908,
|
|
|
+ 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808,
|
|
|
+ 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b,
|
|
|
+ 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819,
|
|
|
+ 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919,
|
|
|
+ 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908,
|
|
|
+ 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808,
|
|
|
+ 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908,
|
|
|
+ 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919,
|
|
|
+ 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08,
|
|
|
+ 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19,
|
|
|
+ 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b,
|
|
|
+ 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b,
|
|
|
+ 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808,
|
|
|
+ 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08,
|
|
|
+ 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b,
|
|
|
+ 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908,
|
|
|
+ 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b,
|
|
|
+ 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908,
|
|
|
+ 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08,
|
|
|
+ 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808,
|
|
|
+ 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808,
|
|
|
+ 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08,
|
|
|
+ 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819,
|
|
|
+ 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919,
|
|
|
+ 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808,
|
|
|
+ 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808,
|
|
|
+ 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819,
|
|
|
+ 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819,
|
|
|
+ 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908,
|
|
|
+ 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908,
|
|
|
+ 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b,
|
|
|
+ 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908,
|
|
|
+ 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908,
|
|
|
+ 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908,
|
|
|
+ 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808,
|
|
|
+ 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819,
|
|
|
+ 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819,
|
|
|
+ 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819,
|
|
|
+ 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808,
|
|
|
+ 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b,
|
|
|
+ 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819,
|
|
|
+ 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819,
|
|
|
+ 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08,
|
|
|
+ 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808,
|
|
|
+ 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19,
|
|
|
+ 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919,
|
|
|
+ 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808,
|
|
|
+ 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19,
|
|
|
+ 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b,
|
|
|
+ 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808,
|
|
|
+ 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b,
|
|
|
+ 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b,
|
|
|
+ 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08,
|
|
|
+ 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b,
|
|
|
+ 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808,
|
|
|
+ 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819,
|
|
|
+ 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808,
|
|
|
+ 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808,
|
|
|
+ 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08,
|
|
|
+ 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b,
|
|
|
+ 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19,
|
|
|
+ 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08,
|
|
|
+ 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919,
|
|
|
+ 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08,
|
|
|
+ 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08,
|
|
|
+ 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908,
|
|
|
+ 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908,
|
|
|
+ 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b,
|
|
|
+ 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908,
|
|
|
+ 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808,
|
|
|
+ 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b,
|
|
|
+ 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808,
|
|
|
+ 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808,
|
|
|
+ 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19,
|
|
|
+ 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08,
|
|
|
+ 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808,
|
|
|
+ 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b,
|
|
|
+ 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808,
|
|
|
+ 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b,
|
|
|
+ 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
|
|
|
+};
|
|
|
+
|
|
|
+static const __device__ uint8_t ksigns_iq2xs[128] = {
|
|
|
+ 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
|
|
|
+ 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
|
|
|
+ 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175,
|
|
|
+ 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63,
|
|
|
+ 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207,
|
|
|
+ 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95,
|
|
|
+ 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111,
|
|
|
+ 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
|
|
|
+};
|
|
|
+
|
|
|
+static const __device__ uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};
|
|
|
+
|
|
|
+typedef half dfloat; // dequantize float
|
|
|
+typedef half2 dfloat2;
|
|
|
+typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
|
|
|
+typedef void (*to_fp16_cuda_t)(const void * __restrict__ x, dfloat * __restrict__ y, int k, cudaStream_t stream);
|
|
|
+typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
|
|
|
+typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
|
|
|
+typedef void (*load_tiles_cuda_t)(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
|
|
|
+typedef float (*vec_dot_q_mul_mat_cuda_t)(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
|
|
|
+
|
|
|
+// Utility function
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+
|
|
|
+#ifndef __has_builtin
|
|
|
+ #define __has_builtin(x) 0
|
|
|
+#endif
|
|
|
+
|
|
|
+typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
|
|
|
+static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
|
|
+ const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
|
|
+ const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
|
|
+#if __has_builtin(__builtin_elementwise_sub_sat)
|
|
|
+ const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
|
|
|
+ return reinterpret_cast<const int &>(c);
|
|
|
+#else
|
|
|
+ int8x4_t c;
|
|
|
+ int16_t tmp;
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < 4; i++) {
|
|
|
+ tmp = va[i] - vb[i];
|
|
|
+ if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
|
|
|
+ if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
|
|
|
+ c[i] = tmp;
|
|
|
+ }
|
|
|
+ return reinterpret_cast<int &>(c);
|
|
|
+#endif // __has_builtin(__builtin_elementwise_sub_sat)
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
|
|
+#if __has_builtin(__builtin_amdgcn_sdot4)
|
|
|
+ c = __builtin_amdgcn_sdot4(a, b, c, false);
|
|
|
+#else
|
|
|
+ const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
|
|
+ const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
|
|
+ c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
|
|
|
+#endif
|
|
|
+ return c;
|
|
|
+}
|
|
|
+#endif // defined(USE_ROCM)
|
|
|
+
|
|
|
+static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
|
|
|
+ const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
|
|
+ int x32 = 0;
|
|
|
+ x32 |= x16[0] << 0;
|
|
|
+ x32 |= x16[1] << 16;
|
|
|
+ return x32;
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
|
|
|
+ const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
|
|
+ int x32 = 0;
|
|
|
+ x32 |= x16[0] << 0;
|
|
|
+ x32 |= x16[1] << 16;
|
|
|
+ return x32;
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
|
|
|
+ return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
|
|
|
+ return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
|
|
+}
|
|
|
+
|
|
|
+// Dequant functions
|
|
|
+static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
|
+ const block_q4_0 * x = (const block_q4_0 *) vx;
|
|
|
+
|
|
|
+ const dfloat d = x[ib].d;
|
|
|
+
|
|
|
+ const int vui = x[ib].qs[iqs];
|
|
|
+
|
|
|
+ v.x = __int2half_rn(vui & 0xF);
|
|
|
+ v.y = __int2half_rn(vui >> 4);
|
|
|
+
|
|
|
+ v = __hsub2(v, __floats2half2_rn(8.0f, 8.0f));
|
|
|
+ v = __hmul2(v, {d, d});
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
|
+ const block_q4_1 * x = (const block_q4_1 *) vx;
|
|
|
+
|
|
|
+ const dfloat d = __low2half(x[ib].dm);
|
|
|
+ const dfloat m = __high2half(x[ib].dm);
|
|
|
+
|
|
|
+ const int vui = x[ib].qs[iqs];
|
|
|
+
|
|
|
+ v.x = __int2half_rn(vui & 0xF);
|
|
|
+ v.y = __int2half_rn(vui >> 4);
|
|
|
+
|
|
|
+ v = __hmul2(v, {d, d});
|
|
|
+ v = __hadd2(v, {m, m});
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
|
+ const block_q5_0 * x = (const block_q5_0 *) vx;
|
|
|
+
|
|
|
+ const dfloat d = x[ib].d;
|
|
|
+
|
|
|
+ uint32_t qh;
|
|
|
+ memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
+
|
|
|
+ const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
|
+ const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
+
|
|
|
+ v.x = __int2half_rn((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
|
+ v.y = __int2half_rn((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
+
|
|
|
+ v = __hsub2(v, __floats2half2_rn(16.0f, 16.0f));
|
|
|
+ v = __hmul2(v, {d, d});
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
|
+ const block_q5_1 * x = (const block_q5_1 *) vx;
|
|
|
+
|
|
|
+ const dfloat d = __low2half(x[ib].dm);
|
|
|
+ const dfloat m = __high2half(x[ib].dm);
|
|
|
+
|
|
|
+ uint32_t qh;
|
|
|
+ memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
+
|
|
|
+ const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
|
+ const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
+
|
|
|
+ v.x = __int2half_rn((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
|
+ v.y = __int2half_rn((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
+
|
|
|
+ v = __hmul2(v, {d, d});
|
|
|
+ v = __hadd2(v, {m, m});
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
|
+ const block_q8_0 * x = (const block_q8_0 *) vx;
|
|
|
+
|
|
|
+ const dfloat d = x[ib].d;
|
|
|
+
|
|
|
+ v.x = __int2half_rn(x[ib].qs[iqs + 0]);
|
|
|
+ v.y = __int2half_rn(x[ib].qs[iqs + 1]);
|
|
|
+
|
|
|
+ v = __hmul2(v, {d, d});
|
|
|
+}
|
|
|
+
|
|
|
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
|
|
+static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
|
|
|
+ const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
|
|
+
|
|
|
+ if (i >= k) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ const int ib = i/qk; // block index
|
|
|
+ const int iqs = (i%qk)/qr; // quant index
|
|
|
+ const int iybs = i - i%qk; // y block start index
|
|
|
+ const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
+
|
|
|
+ // dequantize
|
|
|
+ dfloat2 v;
|
|
|
+ dequantize_kernel(vx, ib, iqs, v);
|
|
|
+
|
|
|
+ y[iybs + iqs + 0] = v.x;
|
|
|
+ y[iybs + iqs + y_offset] = v.y;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
|
|
+
|
|
|
+ const int i = blockIdx.x;
|
|
|
+ const block_q2_K * x = (const block_q2_K *) vx;
|
|
|
+
|
|
|
+ const int tid = threadIdx.x;
|
|
|
+ const int n = tid/32;
|
|
|
+ const int l = tid - 32*n;
|
|
|
+ const int is = 8*n + l/16;
|
|
|
+
|
|
|
+ const uint8_t q = x[i].qs[32*n + l];
|
|
|
+ dst_t * y = yy + i*QK_K + 128*n;
|
|
|
+
|
|
|
+ half dall = __low2half(x[i].dm);
|
|
|
+ half dmin = __high2half(x[i].dm);
|
|
|
+ y[l+ 0] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+0] & 0xF) * ((q >> 0) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+0] >> 4)));
|
|
|
+ y[l+32] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+2] & 0xF) * ((q >> 2) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+2] >> 4)));
|
|
|
+ y[l+64] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+4] & 0xF) * ((q >> 4) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+4] >> 4)));
|
|
|
+ y[l+96] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+6] & 0xF) * ((q >> 6) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+6] >> 4)));
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
|
|
+
|
|
|
+ const int i = blockIdx.x;
|
|
|
+ const block_q3_K * x = (const block_q3_K *) vx;
|
|
|
+
|
|
|
+ const int r = threadIdx.x/4;
|
|
|
+ const int tid = r/2;
|
|
|
+ const int is0 = r%2;
|
|
|
+ const int l0 = 16*is0 + 4*(threadIdx.x%4);
|
|
|
+ const int n = tid / 4;
|
|
|
+ const int j = tid - 4*n;
|
|
|
+
|
|
|
+ uint8_t m = 1 << (4*n + j);
|
|
|
+ int is = 8*n + 2*j + is0;
|
|
|
+ int shift = 2*j;
|
|
|
+
|
|
|
+ int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
|
|
+ is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
|
|
+ is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
|
|
+ (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
|
|
+ half d_all = x[i].d;
|
|
|
+ half dl = __hmul(d_all, __int2half_rn(us - 32));
|
|
|
+
|
|
|
+ dst_t * y = yy + i*QK_K + 128*n + 32*j;
|
|
|
+ const uint8_t * q = x[i].qs + 32*n;
|
|
|
+ const uint8_t * hm = x[i].hmask;
|
|
|
+
|
|
|
+ for (int l = l0; l < l0+4; ++l) y[l] = __hmul(dl, __int2half_rn((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)));
|
|
|
+}
|
|
|
+
|
|
|
+static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
|
|
+ if (j < 4) {
|
|
|
+ d = q[j] & 63; m = q[j + 4] & 63;
|
|
|
+ } else {
|
|
|
+ d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
|
|
+ m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
|
|
+ const block_q4_K * x = (const block_q4_K *) vx;
|
|
|
+
|
|
|
+ const int i = blockIdx.x;
|
|
|
+
|
|
|
+ // assume 32 threads
|
|
|
+ const int tid = threadIdx.x;
|
|
|
+ const int il = tid/8;
|
|
|
+ const int ir = tid%8;
|
|
|
+ const int is = 2*il;
|
|
|
+ const int n = 4;
|
|
|
+
|
|
|
+ dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
|
|
+
|
|
|
+ const half dall = __low2half(x[i].dm);
|
|
|
+ const half dmin = __high2half(x[i].dm);
|
|
|
+
|
|
|
+ const uint8_t * q = x[i].qs + 32*il + n*ir;
|
|
|
+
|
|
|
+ uint8_t sc, m;
|
|
|
+ get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
|
|
+ const half d1 = __hmul(dall, __int2half_rn(sc));
|
|
|
+ const half m1 = __hmul(dmin, __int2half_rn(m));
|
|
|
+ get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
|
|
+ const half d2 = __hmul(dall, __int2half_rn(sc));
|
|
|
+ const half m2 = __hmul(dmin, __int2half_rn(m));
|
|
|
+ for (int l = 0; l < n; ++l) {
|
|
|
+ y[l + 0] = __hsub(__hmul(d1, __int2half_rn(q[l] & 0xF)), m1);
|
|
|
+ y[l +32] = __hsub(__hmul(d2, __int2half_rn(q[l] >> 4)), m2);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
|
|
+ const block_q5_K * x = (const block_q5_K *) vx;
|
|
|
+
|
|
|
+ const int i = blockIdx.x;
|
|
|
+
|
|
|
+ // assume 64 threads - this is very slightly better than the one below
|
|
|
+ const int tid = threadIdx.x;
|
|
|
+ const int il = tid/16; // il is in 0...3
|
|
|
+ const int ir = tid%16; // ir is in 0...15
|
|
|
+ const int is = 2*il; // is is in 0...6
|
|
|
+
|
|
|
+ dst_t * y = yy + i*QK_K + 64*il + 2*ir;
|
|
|
+
|
|
|
+ const half dall = __low2half(x[i].dm);
|
|
|
+ const half dmin = __high2half(x[i].dm);
|
|
|
+
|
|
|
+ const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
|
|
+ const uint8_t * qh = x[i].qh + 2*ir;
|
|
|
+
|
|
|
+ uint8_t sc, m;
|
|
|
+ get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
|
|
+ const half d1 = __hmul(dall, __int2half_rn(sc)); const half m1 = __hmul(dmin, __int2half_rn(m));
|
|
|
+ get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
|
|
+ const half d2 = __hmul(dall, __int2half_rn(sc)); const half m2 = __hmul(dmin, __int2half_rn(m));
|
|
|
+
|
|
|
+ uint8_t hm = 1 << (2*il);
|
|
|
+ y[ 0] = __hsub(__hmul(d1, __int2half_rn((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0))), m1);
|
|
|
+ y[ 1] = __hsub(__hmul(d1, __int2half_rn((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0))), m1);
|
|
|
+ hm <<= 1;
|
|
|
+ y[32] = __hsub(__hmul(d2, __int2half_rn((ql[0] >> 4) + (qh[0] & hm ? 16 : 0))), m2);
|
|
|
+ y[33] = __hsub(__hmul(d2, __int2half_rn((ql[1] >> 4) + (qh[1] & hm ? 16 : 0))), m2);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
|
|
+ const block_q6_K * x = (const block_q6_K *) vx;
|
|
|
+
|
|
|
+ const int i = blockIdx.x;
|
|
|
+
|
|
|
+ // assume 64 threads - this is very slightly better than the one below
|
|
|
+ const int tid = threadIdx.x;
|
|
|
+ const int ip = tid/32; // ip is 0 or 1
|
|
|
+ const int il = tid - 32*ip; // 0...32
|
|
|
+ const int is = 8*ip + il/16;
|
|
|
+
|
|
|
+ dst_t * y = yy + i*QK_K + 128*ip + il;
|
|
|
+
|
|
|
+ const half d = x[i].d;
|
|
|
+
|
|
|
+ const uint8_t * ql = x[i].ql + 64*ip + il;
|
|
|
+ const uint8_t qh = x[i].qh[32*ip + il];
|
|
|
+ const int8_t * sc = x[i].scales + is;
|
|
|
+
|
|
|
+ y[ 0] = __hmul(d, __int2half_rn(sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32)));
|
|
|
+ y[32] = __hmul(d, __int2half_rn(sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32)));
|
|
|
+ y[64] = __hmul(d, __int2half_rn(sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32)));
|
|
|
+ y[96] = __hmul(d, __int2half_rn(sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32)));
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
|
|
+
|
|
|
+ const int i = blockIdx.x;
|
|
|
+ const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
|
|
+
|
|
|
+ const int tid = threadIdx.x;
|
|
|
+ const int il = tid/8; // 0...3
|
|
|
+ const int ib = tid%8; // 0...7
|
|
|
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
|
|
+ const uint16_t * q2 = x[i].qs + 4*ib;
|
|
|
+ const uint8_t * aux8 = (const uint8_t *)q2;
|
|
|
+ const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
|
|
|
+ const uint32_t aux32 = q2[2] | (q2[3] << 16);
|
|
|
+ const float d = __half2float(x[i].d) * (0.5f + (aux32 >> 28)) * 0.25f;
|
|
|
+ const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
|
|
+ for (int j = 0; j < 8; ++j) y[j] = __float2half(d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f));
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
|
|
+
|
|
|
+ const int i = blockIdx.x;
|
|
|
+ const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
|
|
+
|
|
|
+ const int tid = threadIdx.x;
|
|
|
+ const int il = tid/8; // 0...3
|
|
|
+ const int ib = tid%8; // 0...7
|
|
|
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
|
|
+ const uint16_t * q2 = x[i].qs + 4*ib;
|
|
|
+ const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
|
|
|
+ const float d = __half2float(x[i].d) * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
|
|
+ const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
|
|
+ for (int j = 0; j < 8; ++j) y[j] = __float2half(d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f));
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
|
|
+static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
|
|
|
+ const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
|
|
|
+ dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
|
+ const int nb = k / QK_K;
|
|
|
+ dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
|
+ const int nb = k / QK_K;
|
|
|
+ dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
|
+ const int nb = k / QK_K;
|
|
|
+ dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
|
+ const int nb = k / QK_K;
|
|
|
+ dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
|
+ const int nb = k / QK_K;
|
|
|
+ dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
|
+ const int nb = k / QK_K;
|
|
|
+ dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename dst_t>
|
|
|
+static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
|
+ const int nb = k / QK_K;
|
|
|
+ dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
|
|
|
+}
|
|
|
+
|
|
|
+static to_fp16_cuda_t ggml_get_to_fp16_cuda(int type) {
|
|
|
+ switch (type) {
|
|
|
+ case 2:
|
|
|
+ return dequantize_block_cuda<QK4_0, QR4_0, dequantize_q4_0>;
|
|
|
+ case 3:
|
|
|
+ return dequantize_block_cuda<QK4_1, QR4_1, dequantize_q4_1>;
|
|
|
+ case 6:
|
|
|
+ return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
|
|
|
+ case 7:
|
|
|
+ return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
|
|
+ case 8:
|
|
|
+ return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
|
|
+ case 10:
|
|
|
+ return dequantize_row_q2_K_cuda;
|
|
|
+ case 11:
|
|
|
+ return dequantize_row_q3_K_cuda;
|
|
|
+ case 12:
|
|
|
+ return dequantize_row_q4_K_cuda;
|
|
|
+ case 13:
|
|
|
+ return dequantize_row_q5_K_cuda;
|
|
|
+ case 14:
|
|
|
+ return dequantize_row_q6_K_cuda;
|
|
|
+ case 16:
|
|
|
+ return dequantize_row_iq2_xxs_cuda;
|
|
|
+ case 17:
|
|
|
+ return dequantize_row_iq2_xs_cuda;
|
|
|
+ default:
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// GEMV
|
|
|
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
|
|
+static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, dfloat * __restrict__ dst, const int ncols, const int nrows) {
|
|
|
+ // qk = quantized weights per x block
|
|
|
+ // qr = number of quantized weights per data value in x block
|
|
|
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
|
+
|
|
|
+ if (row >= nrows) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ const int tid = threadIdx.x;
|
|
|
+
|
|
|
+ const int iter_stride = 2*GGML_CUDA_DMMV_X;
|
|
|
+ const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
|
|
+ const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
+
|
|
|
+ half2 tmp = __floats2half2_rn(0.0f, 0.0f); // two sums for f16 to take advantage of half2 intrinsics
|
|
|
+
|
|
|
+ for (int i = 0; i < ncols; i += iter_stride) {
|
|
|
+ const int col = i + vals_per_iter*tid;
|
|
|
+ const int ib = (row*ncols + col)/qk; // x block index
|
|
|
+ const int iqs = (col%qk)/qr; // x quant index
|
|
|
+ const int iybs = col - col%qk; // y block start index
|
|
|
+
|
|
|
+// processing >2 values per i iter is faster for fast GPUs
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < vals_per_iter; j += 2) {
|
|
|
+ // process 2 vals per j iter
|
|
|
+
|
|
|
+ // dequantize
|
|
|
+ // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
|
|
+ dfloat2 v;
|
|
|
+ dequantize_kernel(vx, ib, iqs + j/qr, v);
|
|
|
+
|
|
|
+ // matrix multiplication
|
|
|
+ // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
|
|
+ tmp = __hadd2(tmp, __hmul2(v, {
|
|
|
+ y[iybs + iqs + j/qr + 0],
|
|
|
+ y[iybs + iqs + j/qr + y_offset]
|
|
|
+ }));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // sum up partial sums and write back result
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ tmp = __hadd2(tmp, __shfl_xor_sync(0xffffffff, tmp, mask, 32));
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tid == 0) {
|
|
|
+ dst[row] = __hadd(tmp.x, tmp.y);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const dfloat * __restrict__ yy, dfloat * __restrict__ dst, const int ncols, int nrows) {
|
|
|
+
|
|
|
+ static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
+
|
|
|
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
|
+ if (row > nrows) return;
|
|
|
+
|
|
|
+ const int num_blocks_per_row = ncols / QK_K;
|
|
|
+ const int ib0 = row*num_blocks_per_row;
|
|
|
+
|
|
|
+ const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
|
|
+
|
|
|
+ float tmp = 0; // partial sum for thread in warp
|
|
|
+
|
|
|
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
|
|
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
+
|
|
|
+ const int step = 16/K_QUANTS_PER_ITERATION;
|
|
|
+
|
|
|
+ const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
|
+ const int in = tid - step*im; // 0...15 or 0...7
|
|
|
+
|
|
|
+ const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
|
|
+ const int q_offset = 32*im + l0;
|
|
|
+ const int s_offset = 8*im;
|
|
|
+ const int y_offset = 128*im + l0;
|
|
|
+
|
|
|
+ uint32_t aux[4];
|
|
|
+ const uint8_t * d = (const uint8_t *)aux;
|
|
|
+ const uint8_t * m = (const uint8_t *)(aux + 2);
|
|
|
+
|
|
|
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
+
|
|
|
+ const half * y = yy + i * QK_K + y_offset;
|
|
|
+ const uint8_t * q = x[i].qs + q_offset;
|
|
|
+
|
|
|
+ const float dall = __low2float(x[i].dm);
|
|
|
+ const float dmin = __high2float(x[i].dm);
|
|
|
+
|
|
|
+ const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
|
|
+ aux[0] = a[0] & 0x0f0f0f0f;
|
|
|
+ aux[1] = a[1] & 0x0f0f0f0f;
|
|
|
+ aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
|
|
+ aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
|
|
+
|
|
|
+ float sum1 = 0, sum2 = 0;
|
|
|
+ for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
|
+ sum1 += __half2float(y[l+ 0]) * d[0] * ((q[l+ 0] >> 0) & 3)
|
|
|
+ + __half2float(y[l+32]) * d[2] * ((q[l+ 0] >> 2) & 3)
|
|
|
+ + __half2float(y[l+64]) * d[4] * ((q[l+ 0] >> 4) & 3)
|
|
|
+ + __half2float(y[l+96]) * d[6] * ((q[l+ 0] >> 6) & 3)
|
|
|
+ + __half2float(y[l+16]) * d[1] * ((q[l+16] >> 0) & 3)
|
|
|
+ + __half2float(y[l+48]) * d[3] * ((q[l+16] >> 2) & 3)
|
|
|
+ + __half2float(y[l+80]) * d[5] * ((q[l+16] >> 4) & 3)
|
|
|
+ +__half2float(y[l+112]) * d[7] * ((q[l+16] >> 6) & 3);
|
|
|
+ sum2 += __half2float(y[l+ 0]) * m[0] + __half2float(y[l+32]) * m[2] + __half2float(y[l+64]) * m[4] + __half2float(y[ l+96]) * m[6]
|
|
|
+ + __half2float(y[l+16]) * m[1] + __half2float(y[l+48]) * m[3] + __half2float(y[l+80]) * m[5] + __half2float(y[l+112]) * m[7];
|
|
|
+
|
|
|
+ }
|
|
|
+ tmp += dall * sum1 - dmin * sum2;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // sum up partial sums and write back result
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (threadIdx.x == 0) {
|
|
|
+ dst[row] = __float2half(tmp);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const dfloat * __restrict__ yy, dfloat * __restrict__ dst, const int ncols, int nrows) {
|
|
|
+
|
|
|
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
|
+ if (row > nrows) return;
|
|
|
+
|
|
|
+ const int num_blocks_per_row = ncols / QK_K;
|
|
|
+ const int ib0 = row*num_blocks_per_row;
|
|
|
+
|
|
|
+ const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
|
|
+
|
|
|
+ float tmp = 0; // partial sum for thread in warp
|
|
|
+
|
|
|
+ const uint16_t kmask1 = 0x0303;
|
|
|
+ const uint16_t kmask2 = 0x0f0f;
|
|
|
+
|
|
|
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
|
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
+
|
|
|
+ const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
|
|
+ const int step = 16/K_QUANTS_PER_ITERATION;
|
|
|
+ const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
|
+ const int in = tid - step*im; // 0....15 or 0...7
|
|
|
+
|
|
|
+ const uint8_t m = 1 << (4*im);
|
|
|
+
|
|
|
+ const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
|
|
+ const int q_offset = 32*im + l0;
|
|
|
+ const int y_offset = 128*im + l0;
|
|
|
+
|
|
|
+ uint16_t utmp[4];
|
|
|
+ const int8_t * s = (const int8_t *)utmp;
|
|
|
+
|
|
|
+ const uint16_t s_shift = 4*im;
|
|
|
+
|
|
|
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
+
|
|
|
+ const half * y = yy + i * QK_K + y_offset;
|
|
|
+ const uint8_t * q = x[i].qs + q_offset;
|
|
|
+ const uint8_t * h = x[i].hmask + l0;
|
|
|
+
|
|
|
+ const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
|
+ utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
|
|
+ utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
|
|
+ utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
|
|
+ utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
|
|
+
|
|
|
+ const float d = __half2float(x[i].d);
|
|
|
+
|
|
|
+ float sum = 0;
|
|
|
+ for (int l = 0; l < n; ++l) {
|
|
|
+ sum += __half2float(y[l+ 0]) * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
|
|
+ + __half2float(y[l+32]) * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
|
|
+ + __half2float(y[l+64]) * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
|
|
+ + __half2float(y[l+96]) * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
|
|
+ sum += __half2float(y[l+16]) * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
|
|
+ + __half2float(y[l+48]) * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
|
|
+ + __half2float(y[l+80]) * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
|
|
+ + __half2float(y[l+112]) * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
|
|
+ }
|
|
|
+ tmp += d * sum;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // sum up partial sums and write back result
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (threadIdx.x == 0) {
|
|
|
+ dst[row] = __float2half(tmp);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const dfloat * __restrict__ yy, dfloat * __restrict__ dst, const int ncols, int nrows) {
|
|
|
+
|
|
|
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
|
+ if (row > nrows) return;
|
|
|
+ const int num_blocks_per_row = ncols / QK_K;
|
|
|
+ const int ib0 = row*num_blocks_per_row;
|
|
|
+
|
|
|
+ const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
|
|
+
|
|
|
+ const uint16_t kmask1 = 0x3f3f;
|
|
|
+ const uint16_t kmask2 = 0x0f0f;
|
|
|
+ const uint16_t kmask3 = 0xc0c0;
|
|
|
+
|
|
|
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
|
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
+
|
|
|
+ const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
|
|
+
|
|
|
+ const int il = tid/step; // 0...3
|
|
|
+ const int ir = tid - step*il; // 0...7 or 0...3
|
|
|
+ const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
|
|
+
|
|
|
+ const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
|
+ const int in = il%2;
|
|
|
+
|
|
|
+ const int l0 = n*(2*ir + in);
|
|
|
+ const int q_offset = 32*im + l0;
|
|
|
+ const int y_offset = 64*im + l0;
|
|
|
+
|
|
|
+ uint16_t aux[4];
|
|
|
+ const uint8_t * sc = (const uint8_t *)aux;
|
|
|
+
|
|
|
+#if K_QUANTS_PER_ITERATION == 2
|
|
|
+ uint32_t q32[4];
|
|
|
+ const uint8_t * q4 = (const uint8_t *)q32;
|
|
|
+#else
|
|
|
+ uint16_t q16[4];
|
|
|
+ const uint8_t * q4 = (const uint8_t *)q16;
|
|
|
+#endif
|
|
|
+
|
|
|
+ float tmp = 0; // partial sum for thread in warp
|
|
|
+
|
|
|
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
+
|
|
|
+ const half * y1 = yy + i*QK_K + y_offset;
|
|
|
+ const half * y2 = y1 + 128;
|
|
|
+
|
|
|
+ const float dall = __low2float(x[i].dm);
|
|
|
+ const float dmin = __high2float(x[i].dm);
|
|
|
+
|
|
|
+ const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
|
+ aux[0] = a[im+0] & kmask1;
|
|
|
+ aux[1] = a[im+2] & kmask1;
|
|
|
+ aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
|
+ aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
+
|
|
|
+#if K_QUANTS_PER_ITERATION == 2
|
|
|
+ const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
|
|
+ const uint32_t * q2 = q1 + 16;
|
|
|
+
|
|
|
+ q32[0] = q1[0] & 0x0f0f0f0f;
|
|
|
+ q32[1] = q1[0] & 0xf0f0f0f0;
|
|
|
+ q32[2] = q2[0] & 0x0f0f0f0f;
|
|
|
+ q32[3] = q2[0] & 0xf0f0f0f0;
|
|
|
+
|
|
|
+ float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
|
+ float smin = 0;
|
|
|
+ for (int l = 0; l < 4; ++l) {
|
|
|
+ s.x += __half2float(y1[l]) * q4[l+0]; s.y += __half2float(y1[l+32]) * q4[l+ 4];
|
|
|
+ s.z += __half2float(y2[l]) * q4[l+8]; s.w += __half2float(y2[l+32]) * q4[l+12];
|
|
|
+ smin += __half2float(y1[l]) * sc[2] + __half2float(y1[l+32]) * sc[3] + __half2float(y2[l]) * sc[6] + __half2float(y2[l+32]) * sc[7];
|
|
|
+ }
|
|
|
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
|
|
+#else
|
|
|
+ const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
|
|
+ const uint16_t * q2 = q1 + 32;
|
|
|
+
|
|
|
+ q16[0] = q1[0] & 0x0f0f;
|
|
|
+ q16[1] = q1[0] & 0xf0f0;
|
|
|
+ q16[2] = q2[0] & 0x0f0f;
|
|
|
+ q16[3] = q2[0] & 0xf0f0;
|
|
|
+
|
|
|
+ float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
|
+ float smin = 0;
|
|
|
+ for (int l = 0; l < 2; ++l) {
|
|
|
+ s.x += __half2float(y1[l]) * q4[l+0]; s.y += __half2float(y1[l+32]) * q4[l+2];
|
|
|
+ s.z += __half2float(y2[l]) * q4[l+4]; s.w += __half2float(y2[l+32]) * q4[l+6];
|
|
|
+ smin += __half2float(y1[l]) * sc[2] + __half2float(y1[l+32]) * sc[3] + __half2float(y2[l]) * sc[6] + __half2float(y2[l+32]) * sc[7];
|
|
|
+ }
|
|
|
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
|
|
+#endif
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // sum up partial sums and write back result
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tid == 0) {
|
|
|
+ dst[row] = __float2half(tmp);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const dfloat * __restrict__ yy, dfloat * __restrict__ dst, const int ncols) {
|
|
|
+
|
|
|
+ const int row = blockIdx.x;
|
|
|
+ const int num_blocks_per_row = ncols / QK_K;
|
|
|
+ const int ib0 = row*num_blocks_per_row;
|
|
|
+
|
|
|
+ const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
|
|
+
|
|
|
+ float tmp = 0; // partial sum for thread in warp
|
|
|
+
|
|
|
+ const uint16_t kmask1 = 0x3f3f;
|
|
|
+ const uint16_t kmask2 = 0x0f0f;
|
|
|
+ const uint16_t kmask3 = 0xc0c0;
|
|
|
+
|
|
|
+ const int tid = threadIdx.x/2; // 0...15
|
|
|
+ const int ix = threadIdx.x%2;
|
|
|
+
|
|
|
+ const int il = tid/4; // 0...3
|
|
|
+ const int ir = tid - 4*il;// 0...3
|
|
|
+ const int n = 2;
|
|
|
+
|
|
|
+ const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
|
+ const int in = il%2;
|
|
|
+
|
|
|
+ const int l0 = n*(2*ir + in);
|
|
|
+ const int q_offset = 32*im + l0;
|
|
|
+ const int y_offset = 64*im + l0;
|
|
|
+
|
|
|
+ const uint8_t hm1 = 1 << (2*im);
|
|
|
+ const uint8_t hm2 = hm1 << 4;
|
|
|
+
|
|
|
+ uint16_t aux[4];
|
|
|
+ const uint8_t * sc = (const uint8_t *)aux;
|
|
|
+
|
|
|
+ uint16_t q16[8];
|
|
|
+ const uint8_t * q4 = (const uint8_t *)q16;
|
|
|
+
|
|
|
+ for (int i = ix; i < num_blocks_per_row; i += 2) {
|
|
|
+
|
|
|
+ const uint8_t * ql1 = x[i].qs + q_offset;
|
|
|
+ const uint8_t * qh = x[i].qh + l0;
|
|
|
+ const half * y1 = yy + i*QK_K + y_offset;
|
|
|
+ const half * y2 = y1 + 128;
|
|
|
+
|
|
|
+ const float dall = __low2float(x[i].dm);
|
|
|
+ const float dmin = __high2float(x[i].dm);
|
|
|
+
|
|
|
+ const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
|
+ aux[0] = a[im+0] & kmask1;
|
|
|
+ aux[1] = a[im+2] & kmask1;
|
|
|
+ aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
|
+ aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
+
|
|
|
+ float4 sum = {0.f, 0.f, 0.f, 0.f};
|
|
|
+ float smin = 0;
|
|
|
+ const uint16_t * q1 = (const uint16_t *)ql1;
|
|
|
+ const uint16_t * q2 = q1 + 32;
|
|
|
+ q16[0] = q1[0] & 0x0f0f;
|
|
|
+ q16[1] = q1[8] & 0x0f0f;
|
|
|
+ q16[2] = (q1[0] >> 4) & 0x0f0f;
|
|
|
+ q16[3] = (q1[8] >> 4) & 0x0f0f;
|
|
|
+ q16[4] = q2[0] & 0x0f0f;
|
|
|
+ q16[5] = q2[8] & 0x0f0f;
|
|
|
+ q16[6] = (q2[0] >> 4) & 0x0f0f;
|
|
|
+ q16[7] = (q2[8] >> 4) & 0x0f0f;
|
|
|
+ for (int l = 0; l < n; ++l) {
|
|
|
+ sum.x += __half2float(y1[l+ 0]) * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
|
|
+ + __half2float(y1[l+16]) * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
|
|
+ sum.y += __half2float(y1[l+32]) * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
|
|
+ + __half2float(y1[l+48]) * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
|
|
+ sum.z += __half2float(y2[l+ 0]) * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
|
|
+ + __half2float(y2[l+16]) * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
|
|
+ sum.w += __half2float(y2[l+32]) * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
|
|
+ + __half2float(y2[l+48]) * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
|
|
+ smin += (__half2float(y1[l]) + __half2float(y1[l+16])) * sc[2] + (__half2float(y1[l+32]) + __half2float(y1[l+48])) * sc[3]
|
|
|
+ + (__half2float(y2[l]) + __half2float(y2[l+16])) * sc[6] + (__half2float(y2[l+32]) + __half2float(y2[l+48])) * sc[7];
|
|
|
+ }
|
|
|
+ tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
|
|
+ }
|
|
|
+
|
|
|
+ // sum up partial sums and write back result
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (threadIdx.x == 0) {
|
|
|
+ dst[row] = __float2half(tmp);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const dfloat * __restrict__ yy, dfloat * __restrict__ dst, const int ncols, int nrows) {
|
|
|
+
|
|
|
+ static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
+
|
|
|
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
|
+ if (row > nrows) return;
|
|
|
+
|
|
|
+ const int num_blocks_per_row = ncols / QK_K;
|
|
|
+ const int ib0 = row*num_blocks_per_row;
|
|
|
+
|
|
|
+ const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
|
|
+
|
|
|
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
|
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
|
|
+
|
|
|
+ const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
|
|
+
|
|
|
+ const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
|
+ const int in = tid - step*im; // 0...15 or 0...7
|
|
|
+
|
|
|
+#if K_QUANTS_PER_ITERATION == 1
|
|
|
+ const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
|
|
+ const int is = 0;
|
|
|
+#else
|
|
|
+ const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
|
|
+ const int is = in / 4;
|
|
|
+#endif
|
|
|
+ const int ql_offset = 64*im + l0;
|
|
|
+ const int qh_offset = 32*im + l0;
|
|
|
+ const int s_offset = 8*im + is;
|
|
|
+ const int y_offset = 128*im + l0;
|
|
|
+
|
|
|
+ float tmp = 0; // partial sum for thread in warp
|
|
|
+
|
|
|
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
+
|
|
|
+ const half * y = yy + i * QK_K + y_offset;
|
|
|
+ const uint8_t * ql = x[i].ql + ql_offset;
|
|
|
+ const uint8_t * qh = x[i].qh + qh_offset;
|
|
|
+ const int8_t * s = x[i].scales + s_offset;
|
|
|
+
|
|
|
+ const float d = __half2float(x[i].d);
|
|
|
+
|
|
|
+#if K_QUANTS_PER_ITERATION == 1
|
|
|
+ float sum = __half2float(y[ 0]) * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
|
|
+ + __half2float(y[16]) * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
|
|
+ + __half2float(y[32]) * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
|
|
+ + __half2float(y[48]) * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
|
|
+ + __half2float(y[64]) * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
|
|
+ + __half2float(y[80]) * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
|
|
+ + __half2float(y[96]) * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
|
|
+ +__half2float(y[112]) * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
|
|
+ tmp += sum;
|
|
|
+#else
|
|
|
+ float sum = 0;
|
|
|
+ for (int l = 0; l < 4; ++l) {
|
|
|
+ sum += __half2float(y[l+ 0]) * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
|
|
+ + __half2float(y[l+32]) * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
|
|
+ + __half2float(y[l+64]) * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
|
|
+ + __half2float(y[l+96]) * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
|
|
+ }
|
|
|
+ tmp += sum;
|
|
|
+#endif
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // sum up partial sums and write back result
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tid == 0) {
|
|
|
+ dst[row] = __float2half(tmp);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __global__ void dequantize_mul_mat_vec_iq2_xxs(const void * __restrict__ vx, const dfloat * __restrict__ yy, dfloat * __restrict__ dst, const int ncols, int nrows) {
|
|
|
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
|
+ if (row > nrows) return;
|
|
|
+
|
|
|
+ const int num_blocks_per_row = ncols / QK_K;
|
|
|
+ const int ib0 = row*num_blocks_per_row;
|
|
|
+
|
|
|
+ const block_iq2_xxs * x = (const block_iq2_xxs *)vx + ib0;
|
|
|
+
|
|
|
+ float tmp = 0; // partial sum for thread in warp
|
|
|
+
|
|
|
+ const int tid = threadIdx.x/4;
|
|
|
+ const int ix = threadIdx.x%4;
|
|
|
+
|
|
|
+ const int q_offset = tid * 4;
|
|
|
+ const int y_offset = tid * 32;
|
|
|
+
|
|
|
+ for (int i = ix; i < num_blocks_per_row; i += 4) {
|
|
|
+
|
|
|
+ const half * y = yy + i * QK_K + y_offset;
|
|
|
+ const uint16_t * q = x[i].qs + q_offset;
|
|
|
+
|
|
|
+ const uint8_t * aux8 = (const uint8_t *)q;
|
|
|
+ uint32_t aux32 = q[2] | (q[3] << 16);
|
|
|
+ float sumi = 0;
|
|
|
+ for (int l = 0; l < 4; ++l) {
|
|
|
+ const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
|
|
|
+ const uint8_t signs = ksigns_iq2xs[aux32 & 127];
|
|
|
+ for (int j = 0; j < 8; ++j) {
|
|
|
+ sumi += __half2float(y[j]) * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
|
|
+ }
|
|
|
+ y += 8;
|
|
|
+ aux32 >>= 7;
|
|
|
+ }
|
|
|
+ tmp += sumi * __half2float(x[i].d) * (0.5f + aux32) * 0.25f;;
|
|
|
+ }
|
|
|
+
|
|
|
+ // sum up partial sums and write back result
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (threadIdx.x == 0) {
|
|
|
+ dst[row] = __float2half(tmp);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __global__ void dequantize_mul_mat_vec_iq2_xs(const void * __restrict__ vx, const dfloat * __restrict__ yy, dfloat * __restrict__ dst, const int ncols, int nrows) {
|
|
|
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
|
+ if (row > nrows) return;
|
|
|
+
|
|
|
+ const int num_blocks_per_row = ncols / QK_K;
|
|
|
+ const int ib0 = row*num_blocks_per_row;
|
|
|
+
|
|
|
+ const block_iq2_xs * x = (const block_iq2_xs *)vx + ib0;
|
|
|
+
|
|
|
+ float tmp = 0; // partial sum for thread in warp
|
|
|
+
|
|
|
+ const int tid = threadIdx.x/4;
|
|
|
+ const int ix = threadIdx.x%4;
|
|
|
+
|
|
|
+ const int q_offset = tid * 4;
|
|
|
+ const int s_offset = tid;
|
|
|
+ const int y_offset = tid * 32;
|
|
|
+
|
|
|
+ for (int i = ix; i < num_blocks_per_row; i += 4) {
|
|
|
+ const half * y = yy + i * QK_K + y_offset;
|
|
|
+ const uint16_t * q = x[i].qs + q_offset;
|
|
|
+ const uint8_t ls1 = x[i].scales[s_offset] & 0xf;
|
|
|
+ const uint8_t ls2 = x[i].scales[s_offset] >> 4;
|
|
|
+
|
|
|
+ float sumi1 = 0;
|
|
|
+ for (int l = 0; l < 2; ++l) {
|
|
|
+ const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q[l] & 511));
|
|
|
+ const uint8_t signs = ksigns_iq2xs[q[l] >> 9];
|
|
|
+ for (int j = 0; j < 8; ++j) {
|
|
|
+ sumi1 += __half2float(y[j]) * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
|
|
+ }
|
|
|
+ y += 8;
|
|
|
+ }
|
|
|
+ float sumi2 = 0;
|
|
|
+ for (int l = 2; l < 4; ++l) {
|
|
|
+ const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q[l] & 511));
|
|
|
+ const uint8_t signs = ksigns_iq2xs[q[l] >> 9];
|
|
|
+ for (int j = 0; j < 8; ++j) {
|
|
|
+ sumi2 += __half2float(y[j]) * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
|
|
+ }
|
|
|
+ y += 8;
|
|
|
+ }
|
|
|
+ const float d = __half2float(x[i].d) * 0.25f;
|
|
|
+ tmp += d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);;
|
|
|
+ }
|
|
|
+
|
|
|
+ // sum up partial sums and write back result
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (threadIdx.x == 0) {
|
|
|
+ dst[row] = __float2half(tmp);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
|
|
+ const int block_num_y = (nrows + ny - 1) / ny;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(32, ny, 1);
|
|
|
+ dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
|
+ const int block_num_y = (nrows + ny - 1) / ny;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(32, ny, 1);
|
|
|
+ dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
|
+ const int block_num_y = (nrows + ny - 1) / ny;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(32, ny, 1);
|
|
|
+ dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const dim3 block_dims(32, 1, 1);
|
|
|
+ dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
|
+ const int block_num_y = (nrows + ny - 1) / ny;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(32, ny, 1);
|
|
|
+ dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_iq2_xxs_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const dim3 block_dims(32, 1, 1);
|
|
|
+ dequantize_mul_mat_vec_iq2_xxs<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequantize_mul_mat_vec_iq2_xs_cuda(const void * vx, const dfloat * y, dfloat * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const dim3 block_dims(32, 1, 1);
|
|
|
+ dequantize_mul_mat_vec_iq2_xs<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+// Q8 gemv
|
|
|
+static __global__ void quantize_q8_1(const half * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
|
|
|
+ const int ix = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
+ if (ix >= kx_padded) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ const int iy = blockDim.y*blockIdx.y + threadIdx.y;
|
|
|
+ const int i_padded = iy*kx_padded + ix;
|
|
|
+
|
|
|
+ block_q8_1 * y = (block_q8_1 *) vy;
|
|
|
+
|
|
|
+ const int ib = i_padded / QK8_1; // block index
|
|
|
+ const int iqs = i_padded % QK8_1; // quant index
|
|
|
+
|
|
|
+ const float xi = ix < kx ? __half2float(x[iy*kx + ix]) : 0.0f;
|
|
|
+ float amax = fabsf(xi);
|
|
|
+ float sum = xi;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
|
|
|
+ sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ const float d = amax / 127;
|
|
|
+ const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
|
|
|
+
|
|
|
+ y[ib].qs[iqs] = q;
|
|
|
+
|
|
|
+ if (iqs > 0) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ y[ib].ds.x = __float2half(d);
|
|
|
+ y[ib].ds.y = __float2half(sum);
|
|
|
+}
|
|
|
+
|
|
|
+static void quantize_row_q8_1_cuda(const half * x, void * vy, const int kx, const int ky, cudaStream_t stream) {
|
|
|
+ const int64_t kx_padded = (kx + 512 - 1) / 512 * 512;
|
|
|
+ const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
|
|
|
+ const dim3 num_blocks(block_num_x, ky, 1);
|
|
|
+ const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
|
|
|
+ quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
|
|
|
+}
|
|
|
+
|
|
|
+#define VDR_Q4_0_Q8_1_MMVQ 2
|
|
|
+#define VDR_Q4_0_Q8_1_MMQ 4
|
|
|
+
|
|
|
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
|
|
|
+ const int * v, const int * u, const float & d4, const half2 & ds8) {
|
|
|
+ int sumi = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < vdr; ++i) {
|
|
|
+ const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
|
|
+ const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
|
|
+
|
|
|
+ // SIMD dot product of quantized values
|
|
|
+ sumi = __dp4a(vi0, u[2*i+0], sumi);
|
|
|
+ sumi = __dp4a(vi1, u[2*i+1], sumi);
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 ds8f = __half22float2(ds8);
|
|
|
+
|
|
|
+ // second part effectively subtracts 8 from each quant value
|
|
|
+ return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
|
|
|
+}
|
|
|
+
|
|
|
+#define VDR_Q4_1_Q8_1_MMVQ 2
|
|
|
+#define VDR_Q4_1_Q8_1_MMQ 4
|
|
|
+
|
|
|
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
|
|
|
+ const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
|
|
|
+ int sumi = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < vdr; ++i) {
|
|
|
+ const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
|
|
+ const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
|
|
+
|
|
|
+ // SIMD dot product of quantized values
|
|
|
+ sumi = __dp4a(vi0, u[2*i+0], sumi);
|
|
|
+ sumi = __dp4a(vi1, u[2*i+1], sumi);
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 tmp = __half22float2(__hmul2(dm4, ds8));
|
|
|
+ const float d4d8 = tmp.x;
|
|
|
+ const float m4s8 = tmp.y;
|
|
|
+
|
|
|
+ // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
|
|
|
+ return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
|
|
|
+}
|
|
|
+
|
|
|
+#define VDR_Q5_0_Q8_1_MMVQ 2
|
|
|
+#define VDR_Q5_0_Q8_1_MMQ 4
|
|
|
+
|
|
|
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
|
|
|
+ const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
|
|
|
+ int sumi = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < vdr; ++i) {
|
|
|
+ int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
|
|
+ vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
|
|
+ vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
|
|
+ vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
|
|
+ vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
|
|
+ sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
|
|
|
+
|
|
|
+ int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
|
|
+ vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
|
|
+ vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
|
|
+ vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
|
|
+ vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
|
|
+ sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 ds8f = __half22float2(ds8);
|
|
|
+
|
|
|
+ // second part effectively subtracts 16 from each quant value
|
|
|
+ return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+#define VDR_Q5_1_Q8_1_MMVQ 2
|
|
|
+#define VDR_Q5_1_Q8_1_MMQ 4
|
|
|
+
|
|
|
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
|
|
|
+ const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
|
|
|
+ int sumi = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < vdr; ++i) {
|
|
|
+ int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
|
|
+ vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
|
|
+ vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
|
|
+ vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
|
|
+ vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
|
|
+ sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
|
|
|
+
|
|
|
+ int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
|
|
+ vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
|
|
+ vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
|
|
+ vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
|
|
+ vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
|
|
+ sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 tmp = __half22float2(__hmul2(dm5, ds8));
|
|
|
+ const float d5d8 = tmp.x;
|
|
|
+ const float m5s8 = tmp.y;
|
|
|
+
|
|
|
+ // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
|
|
|
+ return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
|
|
|
+}
|
|
|
+
|
|
|
+#define VDR_Q8_0_Q8_1_MMVQ 2
|
|
|
+#define VDR_Q8_0_Q8_1_MMQ 8
|
|
|
+
|
|
|
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
|
|
|
+ const int * v, const int * u, const float & d8_0, const float & d8_1) {
|
|
|
+ int sumi = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < vdr; ++i) {
|
|
|
+ // SIMD dot product of quantized values
|
|
|
+ sumi = __dp4a(v[i], u[i], sumi);
|
|
|
+ }
|
|
|
+ return d8_0*d8_1 * sumi;
|
|
|
+}
|
|
|
+
|
|
|
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
|
|
|
+ const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
|
|
|
+
|
|
|
+ int sumi = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < vdr; ++i) {
|
|
|
+ // SIMD dot product of quantized values
|
|
|
+ sumi = __dp4a(v[i], u[i], sumi);
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 tmp = __half22float2(__hmul2(dm8, ds8));
|
|
|
+ const float d8d8 = tmp.x;
|
|
|
+ const float m8s8 = tmp.y;
|
|
|
+
|
|
|
+ // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
|
|
|
+ return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
|
|
|
+}
|
|
|
+
|
|
|
+#define VDR_Q2_K_Q8_1_MMVQ 1
|
|
|
+#define VDR_Q2_K_Q8_1_MMQ 2
|
|
|
+
|
|
|
+// contiguous v/x values
|
|
|
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
|
|
|
+ const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
|
|
+ const half2 & dm2, const float * __restrict__ d8) {
|
|
|
+ float sumf_d = 0.0f;
|
|
|
+ float sumf_m = 0.0f;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR2_K; ++i) {
|
|
|
+ const int sc = scales[2*i];
|
|
|
+
|
|
|
+ const int vi = (v >> (2*i)) & 0x03030303;
|
|
|
+
|
|
|
+ sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
|
|
|
+
|
|
|
+ // fill int with 4x m
|
|
|
+ int m = sc >> 4;
|
|
|
+ m |= m << 8;
|
|
|
+ m |= m << 16;
|
|
|
+ sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 dm2f = __half22float2(dm2);
|
|
|
+
|
|
|
+ return dm2f.x*sumf_d - dm2f.y*sumf_m;
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
|
|
|
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
|
|
+ const half2 & dm2, const float & d8) {
|
|
|
+ int sumi_d = 0;
|
|
|
+ int sumi_m = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
|
|
|
+ int sumi_d_sc = 0;
|
|
|
+
|
|
|
+ const int sc = scales[i0 / (QI8_1/2)];
|
|
|
+
|
|
|
+ // fill int with 4x m
|
|
|
+ int m = sc >> 4;
|
|
|
+ m |= m << 8;
|
|
|
+ m |= m << 16;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
|
|
+ sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
|
|
|
+ sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
|
|
|
+ }
|
|
|
+
|
|
|
+ sumi_d += sumi_d_sc * (sc & 0xF);
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 dm2f = __half22float2(dm2);
|
|
|
+
|
|
|
+ return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
|
|
|
+}
|
|
|
+
|
|
|
+#define VDR_Q3_K_Q8_1_MMVQ 1
|
|
|
+#define VDR_Q3_K_Q8_1_MMQ 2
|
|
|
+
|
|
|
+// contiguous v/x values
|
|
|
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
|
|
|
+ const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
|
|
+ const int & scale_offset, const float & d3, const float * __restrict__ d8) {
|
|
|
+
|
|
|
+ float sumf = 0.0f;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR3_K; ++i) {
|
|
|
+ const int isc = scale_offset + 2*i;
|
|
|
+
|
|
|
+ const int isc_low = isc % (QK_K/32);
|
|
|
+ const int sc_shift_low = 4 * (isc / (QK_K/32));
|
|
|
+ const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
|
|
|
+
|
|
|
+ const int isc_high = isc % (QK_K/64);
|
|
|
+ const int sc_shift_high = 2 * (isc / (QK_K/64));
|
|
|
+ const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
|
|
|
+
|
|
|
+ const int sc = (sc_low | sc_high) - 32;
|
|
|
+
|
|
|
+ const int vil = (vl >> (2*i)) & 0x03030303;
|
|
|
+
|
|
|
+ const int vih = ((vh >> i) << 2) & 0x04040404;
|
|
|
+
|
|
|
+ const int vi = __vsubss4(vil, vih);
|
|
|
+
|
|
|
+ sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
|
|
+ }
|
|
|
+
|
|
|
+ return d3 * sumf;
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
|
|
|
+ const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
|
|
|
+ const float & d3, const float & d8) {
|
|
|
+ int sumi = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
|
|
|
+ int sumi_sc = 0;
|
|
|
+
|
|
|
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
|
|
+ sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
|
|
|
+ }
|
|
|
+
|
|
|
+ sumi += sumi_sc * scales[i0 / (QI8_1/2)];
|
|
|
+ }
|
|
|
+
|
|
|
+ return d3*d8 * sumi;
|
|
|
+}
|
|
|
+
|
|
|
+#define VDR_Q4_K_Q8_1_MMVQ 2
|
|
|
+#define VDR_Q4_K_Q8_1_MMQ 8
|
|
|
+
|
|
|
+// contiguous v/x values
|
|
|
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
|
|
|
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
|
+ const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
|
|
|
+
|
|
|
+ float sumf_d = 0.0f;
|
|
|
+ float sumf_m = 0.0f;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR4_K; ++i) {
|
|
|
+ const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
|
|
|
+ const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
|
|
|
+
|
|
|
+ const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
|
|
|
+ const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
|
|
|
+
|
|
|
+ sumf_d += d8[i] * (dot1 * sc[i]);
|
|
|
+ sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 dm4f = __half22float2(dm4);
|
|
|
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
|
|
|
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
|
+ const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
|
|
|
+ float sumf_d = 0.0f;
|
|
|
+ float sumf_m = 0.0f;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
|
|
|
+ int sumi_d = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < QI8_1; ++j) {
|
|
|
+ sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 ds8f = __half22float2(ds8[i]);
|
|
|
+
|
|
|
+ sumf_d += ds8f.x * (sc[i] * sumi_d);
|
|
|
+ sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 dm4f = __half22float2(dm4);
|
|
|
+
|
|
|
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
|
|
+}
|
|
|
+
|
|
|
+#define VDR_Q5_K_Q8_1_MMVQ 2
|
|
|
+#define VDR_Q5_K_Q8_1_MMQ 8
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
|
|
|
+ const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
|
+ const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
|
|
|
+
|
|
|
+ float sumf_d = 0.0f;
|
|
|
+ float sumf_m = 0.0f;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR5_K; ++i) {
|
|
|
+ const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
|
|
|
+ const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
|
|
|
+
|
|
|
+ const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
|
|
|
+ const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
|
|
|
+
|
|
|
+ const int v0i = vl0i | vh0i;
|
|
|
+ const int v1i = vl1i | vh1i;
|
|
|
+
|
|
|
+ const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
|
|
|
+ const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
|
|
|
+
|
|
|
+ sumf_d += d8[i] * (dot1 * sc[i]);
|
|
|
+ sumf_m += d8[i] * (dot2 * m[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 dm5f = __half22float2(dm5);
|
|
|
+ return dm5f.x*sumf_d - dm5f.y*sumf_m;
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
|
|
|
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
|
+ const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
|
|
|
+ float sumf_d = 0.0f;
|
|
|
+ float sumf_m = 0.0f;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
|
|
|
+ int sumi_d = 0;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < QI8_1; ++j) {
|
|
|
+ sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 ds8f = __half22float2(ds8[i]);
|
|
|
+
|
|
|
+ sumf_d += ds8f.x * (sc[i] * sumi_d);
|
|
|
+ sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
|
|
|
+ }
|
|
|
+
|
|
|
+ const float2 dm4f = __half22float2(dm4);
|
|
|
+
|
|
|
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
|
|
+}
|
|
|
+
|
|
|
+#define VDR_Q6_K_Q8_1_MMVQ 1
|
|
|
+#define VDR_Q6_K_Q8_1_MMQ 8
|
|
|
+
|
|
|
+// contiguous v/x values
|
|
|
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
|
|
|
+ const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
|
|
|
+ const float & d, const float * __restrict__ d8) {
|
|
|
+ float sumf = 0.0f;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR6_K; ++i) {
|
|
|
+ const int sc = scales[4*i];
|
|
|
+ const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
|
|
|
+ const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
|
|
|
+ const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
|
|
|
+
|
|
|
+ sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
|
|
+ }
|
|
|
+
|
|
|
+ return d*sumf;
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
|
|
|
+ const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
|
|
|
+ const float & d6, const float * __restrict__ d8) {
|
|
|
+ float sumf_d = 0.0f;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
|
|
|
+ int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = i0; i < i0 + 2; ++i) {
|
|
|
+ sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
|
|
|
+ sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
|
|
|
+
|
|
|
+ sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
|
|
|
+ sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
|
|
|
+ }
|
|
|
+
|
|
|
+ sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
|
|
|
+ }
|
|
|
+
|
|
|
+ return d6 * sumf_d;
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+
|
|
|
+ const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
|
|
|
+
|
|
|
+ int v[VDR_Q4_0_Q8_1_MMVQ];
|
|
|
+ int u[2*VDR_Q4_0_Q8_1_MMVQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
|
|
|
+ v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
|
|
|
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
|
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, __half2float(bq4_0->d), bq8_1->ds);
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
|
|
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
|
|
|
+ *x_ql = tile_x_qs;
|
|
|
+ *x_dm = (half2 *) tile_x_d;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI4_0;
|
|
|
+ const int kqsx = k % QI4_0;
|
|
|
+
|
|
|
+ const block_q4_0 * bx0 = (const block_q4_0 *) vx;
|
|
|
+ float * x_dmf = (float *) x_dm;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
|
|
+ // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
|
|
|
+ int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+ x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = __half2float(bxi->d);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+ (void)x_qh; (void)x_sc;
|
|
|
+
|
|
|
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
|
+ const float * x_dmf = (const float *) x_dm;
|
|
|
+
|
|
|
+ int u[2*VDR_Q4_0_Q8_1_MMQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
|
|
|
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
|
|
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
|
|
|
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
|
|
|
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+
|
|
|
+ const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
|
|
|
+
|
|
|
+ int v[VDR_Q4_1_Q8_1_MMVQ];
|
|
|
+ int u[2*VDR_Q4_1_Q8_1_MMVQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
|
|
|
+ v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
|
|
|
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
|
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
|
|
|
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
|
|
|
+ *x_ql = tile_x_qs;
|
|
|
+ *x_dm = tile_x_dm;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI4_1;
|
|
|
+ const int kqsx = k % QI4_1;
|
|
|
+
|
|
|
+ const block_q4_1 * bx0 = (const block_q4_1 *) vx;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
|
|
|
+ int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+ x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
|
+
|
|
|
+ int u[2*VDR_Q4_1_Q8_1_MMQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
|
|
|
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
|
|
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
|
|
|
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
|
|
|
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+
|
|
|
+ const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
|
|
|
+
|
|
|
+ int vl[VDR_Q5_0_Q8_1_MMVQ];
|
|
|
+ int vh[VDR_Q5_0_Q8_1_MMVQ];
|
|
|
+ int u[2*VDR_Q5_0_Q8_1_MMVQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
|
|
|
+ vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
|
|
|
+ vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
|
|
|
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
|
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, __half2float(bq5_0->d), bq8_1->ds);
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
|
|
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
|
|
|
+
|
|
|
+ *x_ql = tile_x_ql;
|
|
|
+ *x_dm = (half2 *) tile_x_d;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI5_0;
|
|
|
+ const int kqsx = k % QI5_0;
|
|
|
+
|
|
|
+ const block_q5_0 * bx0 = (const block_q5_0 *) vx;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+ const int ql = get_int_from_uint8(bxi->qs, kqsx);
|
|
|
+ const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
|
|
|
+
|
|
|
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
|
|
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
|
|
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
|
|
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
|
|
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
|
|
+ qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
|
|
|
+
|
|
|
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
|
|
+
|
|
|
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
|
|
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
|
|
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
|
|
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
|
|
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
|
|
+ qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
|
|
|
+
|
|
|
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row;
|
|
|
+ float * x_dmf = (float *) x_dm;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
|
|
|
+ int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+ x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = __half2float(bxi->d);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
|
+ const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
|
|
|
+ const float * x_dmf = (const float *) x_dm;
|
|
|
+ const float * y_df = (const float *) y_ds;
|
|
|
+
|
|
|
+ int u[2*VDR_Q5_0_Q8_1_MMQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
|
|
|
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
|
|
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
|
|
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+
|
|
|
+ const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
|
|
|
+
|
|
|
+ int vl[VDR_Q5_1_Q8_1_MMVQ];
|
|
|
+ int vh[VDR_Q5_1_Q8_1_MMVQ];
|
|
|
+ int u[2*VDR_Q5_1_Q8_1_MMVQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
|
|
|
+ vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
|
|
|
+ vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
|
|
|
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
|
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
|
|
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
|
|
|
+
|
|
|
+ *x_ql = tile_x_ql;
|
|
|
+ *x_dm = tile_x_dm;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI5_1;
|
|
|
+ const int kqsx = k % QI5_1;
|
|
|
+
|
|
|
+ const block_q5_1 * bx0 = (const block_q5_1 *) vx;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+
|
|
|
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
|
+ const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
|
|
|
+
|
|
|
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
|
|
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
|
|
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
|
|
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
|
|
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
|
|
+
|
|
|
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
|
|
+
|
|
|
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
|
|
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
|
|
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
|
|
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
|
|
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
|
|
+
|
|
|
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
|
|
|
+ int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+
|
|
|
+ x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
|
+ const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
|
|
|
+
|
|
|
+ int u[2*VDR_Q5_1_Q8_1_MMQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
|
|
|
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
|
|
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
|
|
|
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+
|
|
|
+ const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
|
|
|
+
|
|
|
+ int v[VDR_Q8_0_Q8_1_MMVQ];
|
|
|
+ int u[VDR_Q8_0_Q8_1_MMVQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
|
|
|
+ v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
|
|
|
+ u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, __half2float(bq8_0->d), __low2float(bq8_1->ds));
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
|
|
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
|
|
|
+
|
|
|
+ *x_ql = tile_x_qs;
|
|
|
+ *x_dm = (half2 *) tile_x_d;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI8_0;
|
|
|
+ const int kqsx = k % QI8_0;
|
|
|
+ float * x_dmf = (float *) x_dm;
|
|
|
+
|
|
|
+ const block_q8_0 * bx0 = (const block_q8_0 *) vx;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
|
|
|
+ int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+ x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = __half2float(bxi->d);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+ const float * x_dmf = (const float *) x_dm;
|
|
|
+ const float * y_df = (const float *) y_ds;
|
|
|
+
|
|
|
+ return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
|
|
|
+ (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
|
|
|
+ y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+
|
|
|
+ const block_q2_K * bq2_K = (const block_q2_K *) vbq;
|
|
|
+
|
|
|
+ const int bq8_offset = QR2_K * (iqs / QI8_1);
|
|
|
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
|
|
+
|
|
|
+ const uint8_t * scales = bq2_K->scales + scale_offset;
|
|
|
+
|
|
|
+ const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
|
|
|
+ int u[QR2_K];
|
|
|
+ float d8[QR2_K];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR2_K; ++ i) {
|
|
|
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
|
|
+ d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
|
|
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
|
|
|
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
|
|
|
+
|
|
|
+ *x_ql = tile_x_ql;
|
|
|
+ *x_dm = tile_x_dm;
|
|
|
+ *x_sc = tile_x_sc;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI2_K;
|
|
|
+ const int kqsx = k % QI2_K;
|
|
|
+
|
|
|
+ const block_q2_K * bx0 = (const block_q2_K *) vx;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
|
|
|
+ int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+ x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
|
|
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
|
|
|
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+ const int kbx = k / QI2_K;
|
|
|
+ const int ky = (k % QI2_K) * QR2_K;
|
|
|
+ const float * y_df = (const float *) y_ds;
|
|
|
+
|
|
|
+ int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
|
|
|
+
|
|
|
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
|
|
|
+ const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
|
|
|
+ v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
|
|
+ }
|
|
|
+
|
|
|
+ const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
|
|
|
+
|
|
|
+ const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
|
|
|
+ return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+
|
|
|
+ const block_q3_K * bq3_K = (const block_q3_K *) vbq;
|
|
|
+
|
|
|
+ const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
|
|
|
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
|
|
+
|
|
|
+ const float d = __half2float(bq3_K->d);
|
|
|
+
|
|
|
+ const int vl = get_int_from_uint8(bq3_K->qs, iqs);
|
|
|
+
|
|
|
+ // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
|
|
+ const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
|
|
|
+
|
|
|
+ int u[QR3_K];
|
|
|
+ float d8[QR3_K];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR3_K; ++i) {
|
|
|
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
|
|
+ d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
|
|
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
|
|
|
+ __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
|
|
|
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
|
|
|
+
|
|
|
+ *x_ql = tile_x_ql;
|
|
|
+ *x_dm = tile_x_dm;
|
|
|
+ *x_qh = tile_x_qh;
|
|
|
+ *x_sc = tile_x_sc;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI3_K;
|
|
|
+ const int kqsx = k % QI3_K;
|
|
|
+
|
|
|
+ const block_q3_K * bx0 = (const block_q3_K *) vx;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row;
|
|
|
+ float * x_dmf = (float *) x_dm;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
|
|
|
+ int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+ x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = __half2float(bxi->d);
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
|
|
|
+ int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
|
|
|
+ // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
|
|
+ x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
|
|
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
|
|
|
+
|
|
|
+ const int ksc = k % (QI3_K/4);
|
|
|
+
|
|
|
+ const int ksc_low = ksc % (QI3_K/8);
|
|
|
+ const int shift_low = 4 * (ksc / (QI3_K/8));
|
|
|
+ const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
|
|
|
+
|
|
|
+ const int ksc_high = QI3_K/8;
|
|
|
+ const int shift_high = 2 * ksc;
|
|
|
+ const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
|
|
|
+
|
|
|
+ const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
|
|
|
+
|
|
|
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+
|
|
|
+ const int kbx = k / QI3_K;
|
|
|
+ const int ky = (k % QI3_K) * QR3_K;
|
|
|
+ const float * x_dmf = (const float *) x_dm;
|
|
|
+ const float * y_df = (const float *) y_ds;
|
|
|
+
|
|
|
+ const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
|
|
+
|
|
|
+ int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
|
|
|
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
|
|
|
+ const int shift = 2 * ((ky % 32) / 8);
|
|
|
+ const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
|
|
+
|
|
|
+ const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
|
|
|
+ const int vlh = (vh << 2) & 0x04040404;
|
|
|
+
|
|
|
+ v[l] = __vsubss4(vll, vlh);
|
|
|
+ }
|
|
|
+
|
|
|
+ const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
|
|
|
+ return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+ const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
|
|
+
|
|
|
+ int v[2];
|
|
|
+ int u[2*QR4_K];
|
|
|
+ float d8[QR4_K];
|
|
|
+
|
|
|
+ // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
|
|
|
+ const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
|
|
|
+
|
|
|
+ // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
|
|
|
+ // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
|
|
|
+ // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
|
|
|
+ // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
|
|
|
+
|
|
|
+ const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
|
|
+ v[0] = q4[0];
|
|
|
+ v[1] = q4[4];
|
|
|
+
|
|
|
+ const uint16_t * scales = (const uint16_t *)bq4_K->scales;
|
|
|
+ uint16_t aux[2];
|
|
|
+ const int j = bq8_offset/2;
|
|
|
+ if (j < 2) {
|
|
|
+ aux[0] = scales[j+0] & 0x3f3f;
|
|
|
+ aux[1] = scales[j+2] & 0x3f3f;
|
|
|
+ } else {
|
|
|
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
|
|
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
|
|
+ }
|
|
|
+ const uint8_t * sc = (const uint8_t *)aux;
|
|
|
+ const uint8_t * m = sc + 2;
|
|
|
+
|
|
|
+ for (int i = 0; i < QR4_K; ++i) {
|
|
|
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
|
|
+ d8[i] = __low2float(bq8i->ds);
|
|
|
+
|
|
|
+ const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
|
|
+ u[2*i+0] = q8[0];
|
|
|
+ u[2*i+1] = q8[4];
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
|
|
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
|
|
|
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
|
|
|
+
|
|
|
+ *x_ql = tile_x_ql;
|
|
|
+ *x_dm = tile_x_dm;
|
|
|
+ *x_sc = tile_x_sc;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI4_K; // == 0 if QK_K == 256
|
|
|
+ const int kqsx = k % QI4_K; // == k if QK_K == 256
|
|
|
+
|
|
|
+ const block_q4_K * bx0 = (const block_q4_K *) vx;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
|
|
|
+ int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+ x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
|
|
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
|
|
|
+
|
|
|
+ const int * scales = (const int *) bxi->scales;
|
|
|
+
|
|
|
+ const int ksc = k % (WARP_SIZE/8);
|
|
|
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
|
|
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
|
|
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
|
|
+
|
|
|
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+ (void)x_qh;
|
|
|
+
|
|
|
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
|
|
|
+
|
|
|
+ const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
|
|
|
+ return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
|
|
|
+ x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+
|
|
|
+ const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
|
|
+
|
|
|
+ int vl[2];
|
|
|
+ int vh[2];
|
|
|
+ int u[2*QR5_K];
|
|
|
+ float d8[QR5_K];
|
|
|
+
|
|
|
+ const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
|
|
|
+ const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
|
|
+ const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
|
|
|
+
|
|
|
+ vl[0] = ql[0];
|
|
|
+ vl[1] = ql[4];
|
|
|
+
|
|
|
+ vh[0] = qh[0] >> bq8_offset;
|
|
|
+ vh[1] = qh[4] >> bq8_offset;
|
|
|
+
|
|
|
+ const uint16_t * scales = (const uint16_t *)bq5_K->scales;
|
|
|
+ uint16_t aux[2];
|
|
|
+ const int j = bq8_offset/2;
|
|
|
+ if (j < 2) {
|
|
|
+ aux[0] = scales[j+0] & 0x3f3f;
|
|
|
+ aux[1] = scales[j+2] & 0x3f3f;
|
|
|
+ } else {
|
|
|
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
|
|
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
|
|
+ }
|
|
|
+ const uint8_t * sc = (const uint8_t *)aux;
|
|
|
+ const uint8_t * m = sc + 2;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR5_K; ++i) {
|
|
|
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
|
|
+ d8[i] = __low2float(bq8i->ds);
|
|
|
+
|
|
|
+ const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
|
|
+ u[2*i+0] = q8[0];
|
|
|
+ u[2*i+1] = q8[4];
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
|
|
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
|
|
|
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
|
|
|
+
|
|
|
+ *x_ql = tile_x_ql;
|
|
|
+ *x_dm = tile_x_dm;
|
|
|
+ *x_sc = tile_x_sc;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI5_K; // == 0 if QK_K == 256
|
|
|
+ const int kqsx = k % QI5_K; // == k if QK_K == 256
|
|
|
+
|
|
|
+ const block_q5_K * bx0 = (const block_q5_K *) vx;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+ const int ky = QR5_K*kqsx;
|
|
|
+
|
|
|
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
|
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
|
|
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
|
|
+
|
|
|
+ const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
|
|
|
+ const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
|
|
|
+ const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
|
|
|
+
|
|
|
+ const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
|
|
|
+ const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
|
|
|
+
|
|
|
+ x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
|
|
|
+ x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
|
|
|
+ int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+ x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
|
|
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
|
|
|
+
|
|
|
+ const int * scales = (const int *) bxi->scales;
|
|
|
+
|
|
|
+ const int ksc = k % (WARP_SIZE/8);
|
|
|
+
|
|
|
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
|
|
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
|
|
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
|
|
+
|
|
|
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
|
|
|
+
|
|
|
+ const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
|
|
|
+ const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
|
|
|
+ return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
|
|
|
+ x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+
|
|
|
+ const block_q6_K * bq6_K = (const block_q6_K *) vbq;
|
|
|
+
|
|
|
+ const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
|
|
|
+ const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
|
|
|
+ const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
|
|
|
+
|
|
|
+ const int vl = get_int_from_uint8(bq6_K->ql, iqs);
|
|
|
+ const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
|
|
|
+
|
|
|
+ const int8_t * scales = bq6_K->scales + scale_offset;
|
|
|
+
|
|
|
+ int u[QR6_K];
|
|
|
+ float d8[QR6_K];
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < QR6_K; ++i) {
|
|
|
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
|
|
|
+ d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
|
|
|
+ }
|
|
|
+
|
|
|
+ return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, __half2float(bq6_K->d), d8);
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
|
|
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
|
|
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
|
|
|
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
|
|
|
+
|
|
|
+ *x_ql = tile_x_ql;
|
|
|
+ *x_dm = tile_x_dm;
|
|
|
+ *x_sc = tile_x_sc;
|
|
|
+}
|
|
|
+
|
|
|
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
|
|
|
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
|
|
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
|
|
+ const int kbx = k / QI6_K; // == 0 if QK_K == 256
|
|
|
+ const int kqsx = k % QI6_K; // == k if QK_K == 256
|
|
|
+
|
|
|
+ const block_q6_K * bx0 = (const block_q6_K *) vx;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
|
+ int i = i0 + i_offset;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
+ const int ky = QR6_K*kqsx;
|
|
|
+
|
|
|
+ const int ql = get_int_from_uint8(bxi->ql, kqsx);
|
|
|
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
|
|
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
|
|
+
|
|
|
+ const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
|
|
|
+ const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
|
|
|
+ const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
|
|
|
+
|
|
|
+ const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
|
|
|
+ const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
|
|
|
+
|
|
|
+ x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
|
|
|
+ x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
|
|
|
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
|
|
+ float * x_dmf = (float *) x_dm;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
|
|
|
+ int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
+
|
|
|
+ x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = __half2float(bxi->d);
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
|
|
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
|
|
+
|
|
|
+ if (need_check) {
|
|
|
+ i = min(i, i_max);
|
|
|
+ }
|
|
|
+
|
|
|
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
|
|
|
+
|
|
|
+ x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
|
|
|
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
|
|
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
|
|
+ const float * x_dmf = (const float *) x_dm;
|
|
|
+ const float * y_df = (const float *) y_ds;
|
|
|
+
|
|
|
+ const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
|
|
|
+
|
|
|
+ const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
|
|
|
+ const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
|
|
|
+ return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+ const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
|
|
|
+
|
|
|
+ const int ib32 = iqs;
|
|
|
+ const uint16_t * q2 = bq2->qs + 4*ib32;
|
|
|
+ const uint8_t * aux8 = (const uint8_t *)q2;
|
|
|
+ const int8_t * q8 = bq8_1[ib32].qs;
|
|
|
+ uint32_t aux32 = q2[2] | (q2[3] << 16);
|
|
|
+ int sumi = 0;
|
|
|
+ for (int l = 0; l < 4; ++l) {
|
|
|
+ const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
|
|
|
+ const uint8_t signs = ksigns_iq2xs[aux32 & 127];
|
|
|
+ for (int j = 0; j < 8; ++j) {
|
|
|
+ sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
|
|
+ }
|
|
|
+ q8 += 8;
|
|
|
+ aux32 >>= 7;
|
|
|
+ }
|
|
|
+ const float d = __half2float(bq2->d) * (0.5f + aux32) * __half2float(bq8_1[ib32].ds.x) * 0.25f;
|
|
|
+ return d * sumi;
|
|
|
+}
|
|
|
+
|
|
|
+static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
|
|
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
|
|
+ const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
|
|
|
+
|
|
|
+ const int ib32 = iqs;
|
|
|
+ const uint16_t * q2 = bq2->qs + 4*ib32;
|
|
|
+ const int8_t * q8 = bq8_1[ib32].qs;
|
|
|
+ const uint8_t ls1 = bq2->scales[ib32] & 0xf;
|
|
|
+ const uint8_t ls2 = bq2->scales[ib32] >> 4;
|
|
|
+ int sumi1 = 0;
|
|
|
+ for (int l = 0; l < 2; ++l) {
|
|
|
+ const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
|
|
+ const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
|
|
+ for (int j = 0; j < 8; ++j) {
|
|
|
+ sumi1 += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
|
|
+ }
|
|
|
+ q8 += 8;
|
|
|
+ }
|
|
|
+ int sumi2 = 0;
|
|
|
+ for (int l = 2; l < 4; ++l) {
|
|
|
+ const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
|
|
+ const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
|
|
+ for (int j = 0; j < 8; ++j) {
|
|
|
+ sumi2 += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
|
|
+ }
|
|
|
+ q8 += 8;
|
|
|
+ }
|
|
|
+ const float d = __half2float(bq2->d) * __half2float(bq8_1[ib32].ds.x) * 0.25f;
|
|
|
+ return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
|
|
|
+}
|
|
|
+
|
|
|
+template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
|
|
|
+static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, const int ncols, const int nrows) {
|
|
|
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
|
+
|
|
|
+ if (row >= nrows) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ const int blocks_per_row = ncols / qk;
|
|
|
+ const int blocks_per_warp = vdr * WARP_SIZE / qi;
|
|
|
+
|
|
|
+// partial sum for each thread
|
|
|
+ float tmp = 0.0f;
|
|
|
+
|
|
|
+ const block_q_t * x = (const block_q_t *) vx;
|
|
|
+ const block_q8_1 * y = (const block_q8_1 *) vy;
|
|
|
+
|
|
|
+ for (int i = threadIdx.x / (qi/vdr); i < blocks_per_row; i += blocks_per_warp) {
|
|
|
+ const int ibx = row*blocks_per_row + i; // x block index
|
|
|
+
|
|
|
+ const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
|
|
|
+
|
|
|
+ const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
|
|
|
+
|
|
|
+ tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
|
|
|
+ }
|
|
|
+
|
|
|
+ // sum up partial sums and write back result
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (threadIdx.x == 0) {
|
|
|
+ dst[row] = __float2half(tmp);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_iq2_xxs_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+static void mul_mat_vec_iq2_xs_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
|
+ const dim3 block_nums(block_num_y, 1, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
|
+ mul_mat_vec_q<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
|
|
|
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
|
+}
|
|
|
+
|
|
|
+template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
|
|
|
+ allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
|
|
|
+static __device__ __forceinline__ void mul_mat_q(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+
|
|
|
+ const block_q_t * x = (const block_q_t *) vx;
|
|
|
+ const block_q8_1 * y = (const block_q8_1 *) vy;
|
|
|
+
|
|
|
+ const int blocks_per_row_x = ncols_x / qk;
|
|
|
+ const int blocks_per_col_y = nrows_y / QK8_1;
|
|
|
+ const int blocks_per_warp = WARP_SIZE / qi;
|
|
|
+
|
|
|
+ const int & ncols_dst = ncols_y;
|
|
|
+
|
|
|
+ const int row_dst_0 = blockIdx.x*mmq_y;
|
|
|
+ const int & row_x_0 = row_dst_0;
|
|
|
+
|
|
|
+ const int col_dst_0 = blockIdx.y*mmq_x;
|
|
|
+ const int & col_y_0 = col_dst_0;
|
|
|
+
|
|
|
+ int * tile_x_ql = nullptr;
|
|
|
+ half2 * tile_x_dm = nullptr;
|
|
|
+ int * tile_x_qh = nullptr;
|
|
|
+ int * tile_x_sc = nullptr;
|
|
|
+
|
|
|
+ allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
|
|
|
+
|
|
|
+ __shared__ int tile_y_qs[mmq_x * WARP_SIZE];
|
|
|
+ __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
|
|
|
+
|
|
|
+ float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
|
|
|
+
|
|
|
+ for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
|
|
|
+
|
|
|
+ load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
|
|
|
+ threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int ir = 0; ir < qr; ++ir) {
|
|
|
+ const int kqs = ir*WARP_SIZE + threadIdx.x;
|
|
|
+ const int kbxd = kqs / QI8_1;
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < mmq_x; i += nwarps) {
|
|
|
+ const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
|
|
|
+ const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
|
|
|
+ const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
|
|
|
+ tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
|
|
|
+ const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
|
|
|
+ const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
|
|
|
+ const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
|
|
|
+
|
|
|
+ // if the sum is not needed it's faster to transform the scale to f32 ahead of time
|
|
|
+ const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
|
|
|
+ half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
|
|
|
+ if (need_sum) {
|
|
|
+ *dsi_dst = *dsi_src;
|
|
|
+ } else {
|
|
|
+ float * dfi_dst = (float *) dsi_dst;
|
|
|
+ *dfi_dst = __low2float(*dsi_src);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ __syncthreads();
|
|
|
+
|
|
|
+// #pragma unroll // unrolling this loop causes too much register pressure
|
|
|
+ for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < mmq_x; j += nwarps) {
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
|
|
|
+ sum[i/WARP_SIZE][j/nwarps] += vec_dot(
|
|
|
+ tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
|
|
|
+ threadIdx.x + i, threadIdx.y + j, k);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ __syncthreads();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int j = 0; j < mmq_x; j += nwarps) {
|
|
|
+ const int col_dst = col_dst_0 + j + threadIdx.y;
|
|
|
+ if (col_dst >= ncols_dst) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+#pragma unroll
|
|
|
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
|
|
|
+ const int row_dst = row_dst_0 + threadIdx.x + i;
|
|
|
+ if (row_dst >= nrows_dst) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ dst[col_dst*nrows_dst + row_dst] = __float2half(sum[i/WARP_SIZE][j/nwarps]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q4_0 64
|
|
|
+#define MMQ_Y_Q4_0 128
|
|
|
+#define NWARPS_Q4_0 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q4_0 4
|
|
|
+#define MMQ_Y_Q4_0 32
|
|
|
+#define NWARPS_Q4_0 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q4_0, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q4_0(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+ const int mmq_x = MMQ_X_Q4_0;
|
|
|
+ const int mmq_y = MMQ_Y_Q4_0;
|
|
|
+ const int nwarps = NWARPS_Q4_0;
|
|
|
+
|
|
|
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
|
|
|
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q4_0_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+
|
|
|
+ int mmq_x = MMQ_X_Q4_0;
|
|
|
+ int mmq_y = MMQ_Y_Q4_0;
|
|
|
+ int nwarps = NWARPS_Q4_0;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q4_1 64
|
|
|
+#define MMQ_Y_Q4_1 128
|
|
|
+#define NWARPS_Q4_1 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q4_1 4
|
|
|
+#define MMQ_Y_Q4_1 32
|
|
|
+#define NWARPS_Q4_1 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q4_1, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q4_1(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+ const int mmq_x = MMQ_X_Q4_1;
|
|
|
+ const int mmq_y = MMQ_Y_Q4_1;
|
|
|
+ const int nwarps = NWARPS_Q4_1;
|
|
|
+
|
|
|
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
|
|
|
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q4_1_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+
|
|
|
+ int mmq_x = MMQ_X_Q4_1;
|
|
|
+ int mmq_y = MMQ_Y_Q4_1;
|
|
|
+ int nwarps = NWARPS_Q4_1;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q5_0 64
|
|
|
+#define MMQ_Y_Q5_0 128
|
|
|
+#define NWARPS_Q5_0 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q5_0 4
|
|
|
+#define MMQ_Y_Q5_0 32
|
|
|
+#define NWARPS_Q5_0 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q5_0, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q5_0(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+ const int mmq_x = MMQ_X_Q5_0;
|
|
|
+ const int mmq_y = MMQ_Y_Q5_0;
|
|
|
+ const int nwarps = NWARPS_Q5_0;
|
|
|
+
|
|
|
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
|
|
|
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q5_0_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+
|
|
|
+ const int mmq_x = MMQ_X_Q5_0;
|
|
|
+ const int mmq_y = MMQ_Y_Q5_0;
|
|
|
+ const int nwarps = NWARPS_Q5_0;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q5_1 64
|
|
|
+#define MMQ_Y_Q5_1 128
|
|
|
+#define NWARPS_Q5_1 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q5_1 4
|
|
|
+#define MMQ_Y_Q5_1 32
|
|
|
+#define NWARPS_Q5_1 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q5_1, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q5_1(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+ const int mmq_x = MMQ_X_Q5_1;
|
|
|
+ const int mmq_y = MMQ_Y_Q5_1;
|
|
|
+ const int nwarps = NWARPS_Q5_1;
|
|
|
+
|
|
|
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
|
|
|
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q5_1_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+ const int mmq_x = MMQ_X_Q5_1;
|
|
|
+ const int mmq_y = MMQ_Y_Q5_1;
|
|
|
+ const int nwarps = NWARPS_Q5_1;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q8_0 64
|
|
|
+#define MMQ_Y_Q8_0 128
|
|
|
+#define NWARPS_Q8_0 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q8_0 4
|
|
|
+#define MMQ_Y_Q8_0 32
|
|
|
+#define NWARPS_Q8_0 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q8_0, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q8_0(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+ const int mmq_x = MMQ_X_Q8_0;
|
|
|
+ const int mmq_y = MMQ_Y_Q8_0;
|
|
|
+ const int nwarps = NWARPS_Q8_0;
|
|
|
+
|
|
|
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
|
|
|
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q8_0_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+ const int mmq_x = MMQ_X_Q8_0;
|
|
|
+ const int mmq_y = MMQ_Y_Q8_0;
|
|
|
+ const int nwarps = NWARPS_Q8_0;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q2_K 64
|
|
|
+#define MMQ_Y_Q2_K 128
|
|
|
+#define NWARPS_Q2_K 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q2_K 4
|
|
|
+#define MMQ_Y_Q2_K 32
|
|
|
+#define NWARPS_Q2_K 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q2_K, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q2_K(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+ const int mmq_x = MMQ_X_Q2_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q2_K;
|
|
|
+ const int nwarps = NWARPS_Q2_K;
|
|
|
+
|
|
|
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
|
|
|
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q2_K_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+ const int mmq_x = MMQ_X_Q2_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q2_K;
|
|
|
+ const int nwarps = NWARPS_Q2_K;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q3_K 64
|
|
|
+#define MMQ_Y_Q3_K 128
|
|
|
+#define NWARPS_Q3_K 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q3_K 4
|
|
|
+#define MMQ_Y_Q3_K 32
|
|
|
+#define NWARPS_Q3_K 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q3_K, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q3_K(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+
|
|
|
+ const int mmq_x = MMQ_X_Q3_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q3_K;
|
|
|
+ const int nwarps = NWARPS_Q3_K;
|
|
|
+
|
|
|
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
|
|
|
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q3_K_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+
|
|
|
+ const int mmq_x = MMQ_X_Q3_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q3_K;
|
|
|
+ const int nwarps = NWARPS_Q3_K;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q4_K 64
|
|
|
+#define MMQ_Y_Q4_K 128
|
|
|
+#define NWARPS_Q4_K 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q4_K 4
|
|
|
+#define MMQ_Y_Q4_K 32
|
|
|
+#define NWARPS_Q4_K 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q4_K, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q4_K(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+ const int mmq_x = MMQ_X_Q4_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q4_K;
|
|
|
+ const int nwarps = NWARPS_Q4_K;
|
|
|
+
|
|
|
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
|
|
|
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q4_K_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+ const int mmq_x = MMQ_X_Q4_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q4_K;
|
|
|
+ const int nwarps = NWARPS_Q4_K;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q5_K 64
|
|
|
+#define MMQ_Y_Q5_K 128
|
|
|
+#define NWARPS_Q5_K 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q5_K 4
|
|
|
+#define MMQ_Y_Q5_K 32
|
|
|
+#define NWARPS_Q5_K 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q5_K, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q5_K(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+ const int mmq_x = MMQ_X_Q5_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q5_K;
|
|
|
+ const int nwarps = NWARPS_Q5_K;
|
|
|
+
|
|
|
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
|
|
|
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q5_K_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+
|
|
|
+ const int mmq_x = MMQ_X_Q5_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q5_K;
|
|
|
+ const int nwarps = NWARPS_Q5_K;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if defined(USE_ROCM)
|
|
|
+#define MMQ_X_Q6_K 64
|
|
|
+#define MMQ_Y_Q6_K 128
|
|
|
+#define NWARPS_Q6_K 8
|
|
|
+#else
|
|
|
+#define MMQ_X_Q6_K 4
|
|
|
+#define MMQ_Y_Q6_K 32
|
|
|
+#define NWARPS_Q6_K 4
|
|
|
+#endif
|
|
|
+
|
|
|
+template <bool need_check> static __global__ void
|
|
|
+#if defined(USE_ROCM)
|
|
|
+__launch_bounds__(WARP_SIZE*NWARPS_Q6_K, 2)
|
|
|
+#endif
|
|
|
+mul_mat_q6_K(
|
|
|
+ const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst,
|
|
|
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
|
|
+ const int mmq_x = MMQ_X_Q6_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q6_K;
|
|
|
+ const int nwarps = NWARPS_Q6_K;
|
|
|
+
|
|
|
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
|
|
|
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_mul_mat_q6_K_q8_1_cuda(
|
|
|
+ const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x,
|
|
|
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
+ const int mmq_x = MMQ_X_Q6_K;
|
|
|
+ const int mmq_y = MMQ_Y_Q6_K;
|
|
|
+ const int nwarps = NWARPS_Q6_K;
|
|
|
+
|
|
|
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
|
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
|
+ const dim3 block_nums(block_num_x, block_num_y, 1);
|
|
|
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
+
|
|
|
+ if (nrows_x % mmq_y == 0) {
|
|
|
+ const bool need_check = false;
|
|
|
+ mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ } else {
|
|
|
+ const bool need_check = true;
|
|
|
+ mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
|
|
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+torch::Tensor ggml_dequantize(
|
|
|
+ torch::Tensor W, // quant weight
|
|
|
+ int8_t type,
|
|
|
+ int64_t m,
|
|
|
+ int64_t n
|
|
|
+){
|
|
|
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(W));
|
|
|
+ auto options = torch::TensorOptions().dtype(torch::kFloat16).device(W.device());
|
|
|
+ at::Tensor DW = torch::empty({m, n}, options);
|
|
|
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
|
|
+ const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(type);
|
|
|
+ to_fp16_cuda(
|
|
|
+ (void*)W.data_ptr(), (half*)DW.data_ptr(), m * n, stream
|
|
|
+ );
|
|
|
+ return DW;
|
|
|
+}
|
|
|
+
|
|
|
+torch::Tensor ggml_mul_mat_vec(
|
|
|
+ torch::Tensor W, // quant weight
|
|
|
+ torch::Tensor X, // input
|
|
|
+ int8_t type,
|
|
|
+ int64_t row
|
|
|
+){
|
|
|
+ size_t col = X.sizes()[1];
|
|
|
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(X));
|
|
|
+ auto options = torch::TensorOptions().dtype(torch::kFloat16).device(W.device());
|
|
|
+ at::Tensor Y = torch::empty({1, row}, options);
|
|
|
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
|
|
+ switch (type) {
|
|
|
+ case 2:
|
|
|
+ dequantize_mul_mat_vec_q4_0_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ dequantize_mul_mat_vec_q4_1_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 6:
|
|
|
+ dequantize_mul_mat_vec_q5_0_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 7:
|
|
|
+ dequantize_mul_mat_vec_q5_1_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 8:
|
|
|
+ dequantize_mul_mat_vec_q8_0_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 10:
|
|
|
+ dequantize_mul_mat_vec_q2_K_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 11:
|
|
|
+ dequantize_mul_mat_vec_q3_K_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 12:
|
|
|
+ dequantize_mul_mat_vec_q4_K_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 13:
|
|
|
+ dequantize_mul_mat_vec_q5_K_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 14:
|
|
|
+ dequantize_mul_mat_vec_q6_K_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 16:
|
|
|
+ dequantize_mul_mat_vec_iq2_xxs_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 17:
|
|
|
+ dequantize_mul_mat_vec_iq2_xs_cuda((void*)W.data_ptr(), (half*)X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ return Y;
|
|
|
+}
|
|
|
+
|
|
|
+torch::Tensor ggml_mul_mat_vec_a8(
|
|
|
+ torch::Tensor W, // quant weight
|
|
|
+ torch::Tensor X, // input
|
|
|
+ int8_t type,
|
|
|
+ int64_t row
|
|
|
+){
|
|
|
+ int col = X.sizes()[1];
|
|
|
+ const int padded = (col + 512 - 1) / 512 * 512;
|
|
|
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(X));
|
|
|
+ auto options = torch::TensorOptions().dtype(torch::kFloat16).device(W.device());
|
|
|
+ at::Tensor Y = torch::empty({1, row}, options);
|
|
|
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
|
|
+ options = torch::TensorOptions().dtype(torch::kInt32).device(W.device());
|
|
|
+ at::Tensor quant_X = torch::empty({1, padded / 32 * 9}, options);
|
|
|
+ quantize_row_q8_1_cuda((half*)X.data_ptr(), (void*)quant_X.data_ptr(), col, 1, stream);
|
|
|
+ switch (type) {
|
|
|
+ case 2:
|
|
|
+ mul_mat_vec_q4_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ mul_mat_vec_q4_1_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 6:
|
|
|
+ mul_mat_vec_q5_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 7:
|
|
|
+ mul_mat_vec_q5_1_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 8:
|
|
|
+ mul_mat_vec_q8_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 10:
|
|
|
+ mul_mat_vec_q2_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 11:
|
|
|
+ mul_mat_vec_q3_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 12:
|
|
|
+ mul_mat_vec_q4_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 13:
|
|
|
+ mul_mat_vec_q5_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 14:
|
|
|
+ mul_mat_vec_q6_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 16:
|
|
|
+ mul_mat_vec_iq2_xxs_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ case 17:
|
|
|
+ mul_mat_vec_iq2_xs_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, stream);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ return Y;
|
|
|
+}
|
|
|
+
|
|
|
+torch::Tensor ggml_mul_mat_a8(
|
|
|
+ torch::Tensor W, // quant weight
|
|
|
+ torch::Tensor X, // input
|
|
|
+ int8_t type,
|
|
|
+ int64_t row
|
|
|
+) {
|
|
|
+ int col = X.sizes()[1];
|
|
|
+ int padded = (col + 512 - 1) / 512 * 512;
|
|
|
+ int batch = X.sizes()[0];
|
|
|
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(X));
|
|
|
+ auto options = torch::TensorOptions().dtype(torch::kFloat16).device(W.device());
|
|
|
+ at::Tensor Y = torch::empty({batch, row}, options);
|
|
|
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
|
|
+ options = torch::TensorOptions().dtype(torch::kInt32).device(W.device());
|
|
|
+ at::Tensor quant_X = torch::empty({batch, padded / 32 * 9}, options);
|
|
|
+ quantize_row_q8_1_cuda((half*)X.data_ptr(), (void*)quant_X.data_ptr(), col, batch, stream);
|
|
|
+
|
|
|
+ switch (type) {
|
|
|
+ case 2:
|
|
|
+ ggml_mul_mat_q4_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ ggml_mul_mat_q4_1_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ case 6:
|
|
|
+ ggml_mul_mat_q5_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ case 7:
|
|
|
+ ggml_mul_mat_q5_1_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ case 8:
|
|
|
+ ggml_mul_mat_q8_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ case 10:
|
|
|
+ ggml_mul_mat_q2_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ case 11:
|
|
|
+ ggml_mul_mat_q3_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ case 12:
|
|
|
+ ggml_mul_mat_q4_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ case 13:
|
|
|
+ ggml_mul_mat_q5_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ case 14:
|
|
|
+ ggml_mul_mat_q6_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), col, row, batch, padded, row, stream);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ return Y;
|
|
|
+}
|