|
@@ -0,0 +1,155 @@
|
|
|
+from typing import Any, Dict, List, Optional
|
|
|
+
|
|
|
+import torch
|
|
|
+from torch.nn import Module
|
|
|
+from torch.nn.parameter import Parameter
|
|
|
+
|
|
|
+from aphrodite.modeling.layers.linear import (LinearBase, LinearMethodBase,
|
|
|
+ UnquantizedLinearMethod)
|
|
|
+from aphrodite.modeling.utils import set_weight_attrs
|
|
|
+from aphrodite.quantization.base_config import (QuantizationConfig,
|
|
|
+ QuantizeMethodBase)
|
|
|
+from aphrodite.quantization.utils.w8a8_utils import (
|
|
|
+ apply_fp8_linear, create_per_channel_scale_param)
|
|
|
+
|
|
|
+# Note: this is a hack. We should update each model to register the
|
|
|
+# stacked params and get it from there instead in a future PR.
|
|
|
+# fused_name: List[shard_name]
|
|
|
+_FUSED_LAYER_NAME_MAPPING = {
|
|
|
+ "qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
|
+ "gate_up_proj": ["gate_proj", "up_proj"]
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+class FBGEMMFp8Config(QuantizationConfig):
|
|
|
+ """Config class for FBGEMM Fp8."""
|
|
|
+
|
|
|
+ def __init__(self, ignore_list: List[str], input_scale_ub: float):
|
|
|
+ self.ignore_list = ignore_list
|
|
|
+ self.input_scale_ub = input_scale_ub
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def get_name(cls) -> str:
|
|
|
+ return "fbgemm_fp8"
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
|
+ return [torch.bfloat16, torch.float16]
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def get_min_capability(cls) -> int:
|
|
|
+ return 89
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def get_config_filenames(cls) -> List[str]:
|
|
|
+ return []
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_config(cls, config: Dict[str, Any]) -> "FBGEMMFp8Config":
|
|
|
+ ignore_list = cls.get_from_keys(config, ["modules_to_not_convert"])
|
|
|
+ input_scale_ub = cls.get_from_keys(config, ["activation_scale_ub"])
|
|
|
+ return cls(ignore_list=ignore_list, input_scale_ub=input_scale_ub)
|
|
|
+
|
|
|
+ def _is_layer_skipped(self, prefix: str) -> bool:
|
|
|
+ # prefix: model.layers.0.self_attn.q_proj
|
|
|
+ # proj_name: q_proj
|
|
|
+ proj_name = prefix.split(".")[-1]
|
|
|
+ if proj_name in _FUSED_LAYER_NAME_MAPPING:
|
|
|
+ shard_prefixes = [
|
|
|
+ prefix.replace(proj_name, shard_proj_name)
|
|
|
+ for shard_proj_name in _FUSED_LAYER_NAME_MAPPING[proj_name]
|
|
|
+ ]
|
|
|
+
|
|
|
+ is_skipped = None
|
|
|
+ for shard_prefix in shard_prefixes:
|
|
|
+ is_shard_skipped = shard_prefix in self.ignore_list
|
|
|
+
|
|
|
+ if is_skipped is None:
|
|
|
+ is_skipped = is_shard_skipped
|
|
|
+ elif is_shard_skipped != is_skipped:
|
|
|
+ raise ValueError(
|
|
|
+ f"Detected some but not all shards of {prefix} "
|
|
|
+ "are quantized. All shards of fused layers "
|
|
|
+ "to have the same precision.")
|
|
|
+ else:
|
|
|
+ is_skipped = prefix in self.ignore_list
|
|
|
+
|
|
|
+ assert is_skipped is not None
|
|
|
+ return is_skipped
|
|
|
+
|
|
|
+ def get_quant_method(self, layer: torch.nn.Module,
|
|
|
+ prefix: str) -> Optional["QuantizeMethodBase"]:
|
|
|
+ if isinstance(layer, LinearBase):
|
|
|
+ if self._is_layer_skipped(prefix):
|
|
|
+ return UnquantizedLinearMethod()
|
|
|
+ return FBGEMMFp8LinearMethod(self)
|
|
|
+ return None
|
|
|
+
|
|
|
+ def get_scaled_act_names(self) -> List[str]:
|
|
|
+ return []
|
|
|
+
|
|
|
+
|
|
|
+class FBGEMMFp8LinearMethod(LinearMethodBase):
|
|
|
+
|
|
|
+ def __init__(self, quant_config: FBGEMMFp8Config):
|
|
|
+ self.quant_config = quant_config
|
|
|
+
|
|
|
+ def create_weights(
|
|
|
+ self,
|
|
|
+ layer: torch.nn.Module,
|
|
|
+ input_size_per_partition: int,
|
|
|
+ output_partition_sizes: List[int],
|
|
|
+ input_size: int,
|
|
|
+ output_size: int,
|
|
|
+ params_dtype: torch.dtype,
|
|
|
+ **extra_weight_attrs,
|
|
|
+ ):
|
|
|
+ del input_size, output_size
|
|
|
+ output_size_per_partition = sum(output_partition_sizes)
|
|
|
+
|
|
|
+ layer.logical_widths = output_partition_sizes
|
|
|
+
|
|
|
+ layer.input_size_per_partition = input_size_per_partition
|
|
|
+ layer.output_size_per_partition = output_size_per_partition
|
|
|
+ layer.orig_dtype = params_dtype
|
|
|
+
|
|
|
+ # WEIGHT
|
|
|
+ weight = Parameter(torch.empty(output_size_per_partition,
|
|
|
+ input_size_per_partition,
|
|
|
+ dtype=torch.float8_e4m3fn),
|
|
|
+ requires_grad=False)
|
|
|
+ layer.register_parameter("weight", weight)
|
|
|
+ set_weight_attrs(weight, {
|
|
|
+ "input_dim": 1,
|
|
|
+ "output_dim": 0,
|
|
|
+ **extra_weight_attrs,
|
|
|
+ })
|
|
|
+
|
|
|
+ # WEIGHT SCALE
|
|
|
+ weight_scale = create_per_channel_scale_param(output_partition_sizes,
|
|
|
+ **extra_weight_attrs)
|
|
|
+ layer.register_parameter("weight_scale", weight_scale)
|
|
|
+
|
|
|
+ # INPUT SCALE UPPER BOUND
|
|
|
+ input_scale_ub = torch.nn.Parameter(torch.tensor(
|
|
|
+ (self.quant_config.input_scale_ub), dtype=torch.float32),
|
|
|
+ requires_grad=False)
|
|
|
+ layer.input_scale_ub = input_scale_ub
|
|
|
+
|
|
|
+ def process_weights_after_loading(self, layer: Module) -> None:
|
|
|
+ weight = layer.weight
|
|
|
+ layer.weight = Parameter(weight.t(), requires_grad=False)
|
|
|
+
|
|
|
+ def apply(self,
|
|
|
+ layer: torch.nn.Module,
|
|
|
+ x: torch.Tensor,
|
|
|
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
+
|
|
|
+ return apply_fp8_linear(input=x,
|
|
|
+ weight=layer.weight,
|
|
|
+ weight_scale=layer.weight_scale,
|
|
|
+ input_scale=None,
|
|
|
+ input_scale_ub=layer.input_scale_ub,
|
|
|
+ bias=bias,
|
|
|
+ cutlass_fp8_supported=True,
|
|
|
+ use_per_token_if_dynamic=True)
|