|
@@ -1,28 +1,51 @@
|
|
|
+from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
from contextlib import suppress
|
|
|
-from typing import Any, Dict, List, Optional
|
|
|
|
|
|
import torch
|
|
|
from torch.nn import Module
|
|
|
from torch.nn.parameter import Parameter
|
|
|
+from loguru import logger
|
|
|
|
|
|
from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
|
|
|
+from aphrodite.quantization.base_config import (QuantizationConfig)
|
|
|
from aphrodite.modeling.utils import set_weight_attrs
|
|
|
-from aphrodite.quantization.base_config import (QuantizationConfig,
|
|
|
- QuantizeMethodBase)
|
|
|
|
|
|
HAS_QUANTS = False
|
|
|
with suppress(ImportError):
|
|
|
from aphrodite._quant_C import quant_ops as ops
|
|
|
HAS_QUANTS = True
|
|
|
|
|
|
+ACTIVATION_SCHEMES = ["static", "dynamic"]
|
|
|
+
|
|
|
+
|
|
|
+def scaled_fp8_quant(
|
|
|
+ input: torch.Tensor,
|
|
|
+ scale: Optional[torch.Tensor] = None
|
|
|
+) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ output = torch.empty_like(input, dtype=torch.float8_e4m3fn)
|
|
|
+ if scale is None:
|
|
|
+ scale = torch.zeros(1, device=input.device, dtype=torch.float32)
|
|
|
+ ops.dynamic_scaled_fp8_quant(output, input, scale)
|
|
|
+ else:
|
|
|
+ ops.static_scaled_fp8_quant(output, input, scale)
|
|
|
+ return output, scale
|
|
|
+
|
|
|
|
|
|
class Fp8Config(QuantizationConfig):
|
|
|
"""Config class for FP8."""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
+ is_checkpoint_fp8_serialized: bool = False,
|
|
|
activation_scheme: str = "dynamic",
|
|
|
) -> None:
|
|
|
+ self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
|
|
|
+ if is_checkpoint_fp8_serialized:
|
|
|
+ logger.warning("Detected fp8 checkpoint. Please note that the "
|
|
|
+ "format is experimental and subject to change.")
|
|
|
+ if activation_scheme not in ACTIVATION_SCHEMES:
|
|
|
+ raise ValueError(
|
|
|
+ f"Unsupported activation scheme {activation_scheme}")
|
|
|
self.activation_scheme = activation_scheme
|
|
|
|
|
|
@classmethod
|
|
@@ -43,11 +66,14 @@ class Fp8Config(QuantizationConfig):
|
|
|
|
|
|
@classmethod
|
|
|
def from_config(cls, config: Dict[str, Any]) -> "Fp8Config":
|
|
|
+ quant_method = cls.get_from_keys(config, ["quant_method"])
|
|
|
+ is_checkpoint_fp8_serialized = ("fp8" in quant_method)
|
|
|
activation_scheme = cls.get_from_keys(config, ["activation_scheme"])
|
|
|
- return cls(activation_scheme)
|
|
|
+ return cls(is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
|
|
|
+ activation_scheme=activation_scheme)
|
|
|
|
|
|
def get_quant_method(
|
|
|
- self, layer: torch.nn.Module) -> Optional["QuantizeMethodBase"]:
|
|
|
+ self, layer: torch.nn.Module) -> Optional["Fp8LinearMethod"]:
|
|
|
if isinstance(layer, LinearBase):
|
|
|
return Fp8LinearMethod(self)
|
|
|
return None
|
|
@@ -58,9 +84,11 @@ class Fp8Config(QuantizationConfig):
|
|
|
|
|
|
class Fp8LinearMethod(LinearMethodBase):
|
|
|
"""Linear method for FP8.
|
|
|
- We now support common FP16/BF16 model checkpoints ONLY. The weight
|
|
|
- scaling factor will be initialized after the model weights are loaded.
|
|
|
-
|
|
|
+ Supports loading FP8 checkpoints with static weight scale and
|
|
|
+ dynamic/static activation scale.
|
|
|
+ Also supports loading quantized FP16/BF16 model checkpoints with dynamic
|
|
|
+ activation scaling. The weight scaling factor will be initialized after
|
|
|
+ the model weights are loaded.
|
|
|
Limitations:
|
|
|
1. Only support per-tensor quantization due to torch._scaled_mm support.
|
|
|
2. Only support float8_e4m3fn data type due to the limitation of
|
|
@@ -75,6 +103,24 @@ class Fp8LinearMethod(LinearMethodBase):
|
|
|
raise ImportError("Could not find the quantization kernels.")
|
|
|
self.quant_config = quant_config
|
|
|
|
|
|
+ def _create_scale_param(
|
|
|
+ self,
|
|
|
+ scale_name: str,
|
|
|
+ layer: torch.nn.Module,
|
|
|
+ output_partition_sizes: List[int],
|
|
|
+ **extra_weight_attrs,
|
|
|
+ ) -> None:
|
|
|
+ scale = Parameter(torch.empty(len(output_partition_sizes),
|
|
|
+ dtype=torch.float32),
|
|
|
+ requires_grad=False)
|
|
|
+ layer.register_parameter(scale_name, scale)
|
|
|
+ set_weight_attrs(
|
|
|
+ scale, {
|
|
|
+ **extra_weight_attrs,
|
|
|
+ "fp8_scales_shard_indexer":
|
|
|
+ self.scales_shard_indexer,
|
|
|
+ })
|
|
|
+
|
|
|
def create_weights(
|
|
|
self,
|
|
|
layer: torch.nn.Module,
|
|
@@ -85,46 +131,149 @@ class Fp8LinearMethod(LinearMethodBase):
|
|
|
params_dtype: torch.dtype,
|
|
|
**extra_weight_attrs,
|
|
|
):
|
|
|
+ del input_size, output_size
|
|
|
output_size_per_partition = sum(output_partition_sizes)
|
|
|
+
|
|
|
+ layer.process_after_load = True
|
|
|
+ layer.logical_widths = output_partition_sizes
|
|
|
+
|
|
|
+ # WEIGHT
|
|
|
+ weight_dtype = (torch.float8_e4m3fn
|
|
|
+ if self.quant_config.is_checkpoint_fp8_serialized else
|
|
|
+ params_dtype)
|
|
|
weight = Parameter(torch.empty(output_size_per_partition,
|
|
|
input_size_per_partition,
|
|
|
- dtype=params_dtype),
|
|
|
+ dtype=weight_dtype),
|
|
|
requires_grad=False)
|
|
|
layer.register_parameter("weight", weight)
|
|
|
- set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
|
|
|
- set_weight_attrs(weight, extra_weight_attrs)
|
|
|
+ set_weight_attrs(weight, {
|
|
|
+ **extra_weight_attrs,
|
|
|
+ "input_dim": 1,
|
|
|
+ "output_dim": 0,
|
|
|
+ })
|
|
|
|
|
|
- w_scale = Parameter(
|
|
|
- torch.empty(1, dtype=torch.float32),
|
|
|
- requires_grad=False,
|
|
|
- )
|
|
|
- layer.register_parameter("weight_scaling_factor", w_scale)
|
|
|
+ # If checkpoint is serialized fp8, load them.
|
|
|
+ # Otherwise, wait until process_weights_after_loading.
|
|
|
+ if self.quant_config.is_checkpoint_fp8_serialized:
|
|
|
+ # WEIGHT SCALE
|
|
|
+ self._create_scale_param(
|
|
|
+ scale_name="weight_scale",
|
|
|
+ layer=layer,
|
|
|
+ output_partition_sizes=output_partition_sizes,
|
|
|
+ **extra_weight_attrs)
|
|
|
+
|
|
|
+ # ACTIVATION SCALE
|
|
|
+ if self.quant_config.activation_scheme == "static":
|
|
|
+ self._create_scale_param(
|
|
|
+ scale_name="act_scale",
|
|
|
+ layer=layer,
|
|
|
+ output_partition_sizes=output_partition_sizes,
|
|
|
+ **extra_weight_attrs)
|
|
|
+
|
|
|
+ def scales_shard_indexer(
|
|
|
+ self, param: torch.Tensor, loaded_weight: torch.Tensor,
|
|
|
+ shard_id: Union[str, int]) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ qkv_idxs = {"q": 0, "k": 1, "v": 2}
|
|
|
+
|
|
|
+ if isinstance(shard_id, int):
|
|
|
+ pass
|
|
|
+ elif isinstance(shard_id, str):
|
|
|
+ if shard_id not in qkv_idxs:
|
|
|
+ raise ValueError(f"Unknown shard_id: {shard_id}")
|
|
|
+ shard_id = qkv_idxs[shard_id]
|
|
|
+ else:
|
|
|
+ ValueError(f"Shard id must be int or str but got {type(shard_id)}")
|
|
|
+
|
|
|
+ return param[shard_id], loaded_weight
|
|
|
|
|
|
def process_weights_after_loading(self, layer: Module) -> None:
|
|
|
- # Although the linear_method is propagated to all layers,
|
|
|
- # only linear layers invoke "create_weights". So we check
|
|
|
- # whether "weight_scaling_facor" is registered to determine
|
|
|
- # whether the layer is a linear layer that requires quantization.
|
|
|
- if not hasattr(layer, "weight_scaling_factor"):
|
|
|
+ if (not hasattr(layer, "process_after_load")
|
|
|
+ or not layer.process_after_load):
|
|
|
+ return
|
|
|
+
|
|
|
+ # If checkpoint is fp/bf16 (not serialized fp8), quantize the weights.
|
|
|
+ if not self.quant_config.is_checkpoint_fp8_serialized:
|
|
|
+ qweight, weight_scale = scaled_fp8_quant(layer.weight, scale=None)
|
|
|
+ layer.weight = Parameter(qweight.t(), requires_grad=False)
|
|
|
+ layer.weight_scale = Parameter(weight_scale, requires_grad=False)
|
|
|
+ layer.logical_widths = None
|
|
|
+ layer.act_scale = None
|
|
|
return
|
|
|
|
|
|
- qweight, weight_scale = ops.scaled_fp8_quant(layer.weight)
|
|
|
- # torch._scaled_mm requires column-major in the second
|
|
|
- # input (weight), so we transpose the quantized weight.
|
|
|
- layer.weight = Parameter(qweight.t(), requires_grad=False)
|
|
|
- layer.weight_scaling_factor.data.copy_(weight_scale)
|
|
|
+ # If checkpoint is fp8, requantize the separately quantized logical
|
|
|
+ # weights into a single fp8 weight with a single weight scale.
|
|
|
+ else:
|
|
|
+ # WEIGHT_SCALE / WEIGHT
|
|
|
+ # Loop over logical weights, requantizing with single scale.
|
|
|
+ max_w_scale = layer.weight_scale.max()
|
|
|
+ start = 0
|
|
|
+ for idx, logical_width in enumerate(layer.logical_widths):
|
|
|
+ end = start + logical_width
|
|
|
+ weight_dq = per_tensor_dequantize(layer.weight[start:end, :],
|
|
|
+ layer.weight_scale[idx])
|
|
|
+
|
|
|
+ layer.weight[start:end, :] = per_tensor_quantize(
|
|
|
+ weight_dq, layer.weight_scale.max())
|
|
|
+ start = end
|
|
|
+ layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
|
|
|
+
|
|
|
+ # WEIGHT
|
|
|
+ # Transpose weight for passing to torch._scaled_mm
|
|
|
+ weight = layer.weight
|
|
|
+ layer.weight = Parameter(weight.t(), requires_grad=False)
|
|
|
+
|
|
|
+ # ACT_SCALE
|
|
|
+ # Dynamic: set to None (required input to ops.scaled_fp8_quant).
|
|
|
+ # Static: set to max of the act_scales (since they are equal).
|
|
|
+ if self.quant_config.activation_scheme == "dynamic":
|
|
|
+ layer.act_scale = None
|
|
|
+ elif self.quant_config.activation_scheme == "static":
|
|
|
+ if not all_close_1d(layer.act_scale):
|
|
|
+ raise ValueError(
|
|
|
+ "All the act_scales for the logical weights of a layer "
|
|
|
+ f"must be equal. But got {layer.act_scale}")
|
|
|
+ layer.act_scale = Parameter(layer.act_scale.max(),
|
|
|
+ requires_grad=False)
|
|
|
+ else:
|
|
|
+ raise ValueError(
|
|
|
+ f"Unknown scheme {self.quant_config.activation_scheme}")
|
|
|
|
|
|
def apply(self,
|
|
|
layer: torch.nn.Module,
|
|
|
x: torch.Tensor,
|
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
- qinput, x_scale = ops.scaled_fp8_quant(x)
|
|
|
+ # ops.scaled_fp8_quant supports both dynamic and static quant.
|
|
|
+ # If dynamic, layer.act_scale is None and x_scale computed from x.
|
|
|
+ # If static, layer.act_scale is scalar and x_scale set to act_scale.
|
|
|
+ qinput, x_scale = scaled_fp8_quant(x, layer.act_scale)
|
|
|
+
|
|
|
+ # Fused GEMM_DQ
|
|
|
output, _ = torch._scaled_mm(
|
|
|
qinput,
|
|
|
layer.weight,
|
|
|
out_dtype=x.dtype,
|
|
|
scale_a=x_scale,
|
|
|
- scale_b=layer.weight_scaling_factor,
|
|
|
+ scale_b=layer.weight_scale,
|
|
|
bias=bias,
|
|
|
)
|
|
|
+
|
|
|
return output
|
|
|
+
|
|
|
+
|
|
|
+def all_close_1d(x: torch.Tensor) -> bool:
|
|
|
+ assert len(x.shape) == 1
|
|
|
+ return all(torch.allclose(x[0], x[i]) for i in range(x.shape[0]))
|
|
|
+
|
|
|
+
|
|
|
+def per_tensor_quantize(tensor: torch.Tensor,
|
|
|
+ inv_scale: float) -> torch.Tensor:
|
|
|
+ finfo = torch.finfo(torch.float8_e4m3fn)
|
|
|
+ qweight = (tensor / inv_scale).clamp(min=finfo.min, max=finfo.max)
|
|
|
+ return qweight.to(torch.float8_e4m3fn)
|
|
|
+
|
|
|
+
|
|
|
+def per_tensor_dequantize(tensor: torch.Tensor,
|
|
|
+ inv_scale: float) -> torch.Tensor:
|
|
|
+ fake_qweight = tensor.to(torch.float16)
|
|
|
+ dq_weight = fake_qweight * inv_scale
|
|
|
+ return dq_weight
|