|
@@ -1,6 +1,8 @@
|
|
|
# coding=utf-8
|
|
|
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
|
|
-# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
|
+# Copyright 2023 The PygmalionAI team.
|
|
|
+# Copyright 2023 The vLLM team.
|
|
|
+# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
|
#
|
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
|
# and OPT implementations in this library. It has been modified from its
|
|
@@ -92,4 +94,189 @@ class LlamaAttention(nn.Module):
|
|
|
bias=False,
|
|
|
input_is_parallel=True,
|
|
|
perform_initialization=False,
|
|
|
- )
|
|
|
+ )
|
|
|
+ self.attn = PagedAttentionWithRoPE(self.num_heads, self.head_dim, self.scaling, rotary_dim=self.head_dim)
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ positions: torch.Tensor,
|
|
|
+ hidden_states: torch.Tensor,
|
|
|
+ kv_cache: KVCache,
|
|
|
+ input_metadata: InputMetadata,
|
|
|
+ cache_event: Optional[torch.cuda.Event],
|
|
|
+ ) -> torch.Tensor:
|
|
|
+ qkv, _ = self.qkv_proj(hidden_states)
|
|
|
+ q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
|
+ k_cache, v_cache = kv_cache
|
|
|
+ attn_output = self.attn(
|
|
|
+ positions, q, k, v, k_cache, v_cache, input_metadata, cache_event)
|
|
|
+ output, _ = self.o_proj(attn_output)
|
|
|
+ return output
|
|
|
+
|
|
|
+
|
|
|
+class LlamaDecoderLayer(nn.Module):
|
|
|
+
|
|
|
+ def __init__(self, config: LlamaConfig):
|
|
|
+ super().__init__()
|
|
|
+ self.hidden_size = config.hidden_size
|
|
|
+ self.self_attn = LlamaAttention(
|
|
|
+ hidden_size=self.hidden_size,
|
|
|
+ num_heads=config.num_attention_heads,
|
|
|
+ )
|
|
|
+ self.mlp = LlamaMLP(
|
|
|
+ hidden_size=self.hidden_size,
|
|
|
+ intermediate_size=config.intermediate_size,
|
|
|
+ hidden_act=config.hidden_act,
|
|
|
+ )
|
|
|
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ positions: torch.Tensor,
|
|
|
+ hidden_states: torch.Tensor,
|
|
|
+ kv_cache: KVCache,
|
|
|
+ input_metadata: InputMetadata,
|
|
|
+ cache_event: Optional[torch.cuda.Event],
|
|
|
+ ) -> torch.Tensor:
|
|
|
+ # Self Attention
|
|
|
+ residual = hidden_states
|
|
|
+ hidden_states = self.input_layernorm(hidden_states)
|
|
|
+ hidden_states = self.self_attn(
|
|
|
+ positions=positions,
|
|
|
+ hidden_states=hidden_states,
|
|
|
+ kv_cache=kv_cache,
|
|
|
+ input_metadata=input_metadata,
|
|
|
+ cache_event=cache_event,
|
|
|
+ )
|
|
|
+ hidden_states = residual + hidden_states
|
|
|
+
|
|
|
+ # Fully Connected
|
|
|
+ residual = hidden_states
|
|
|
+ hidden_states = self.post_attention_layernorm(hidden_states)
|
|
|
+ hidden_states = self.mlp(hidden_states)
|
|
|
+ hidden_states = residual + hidden_states
|
|
|
+ return hidden_states
|
|
|
+
|
|
|
+class LlamaModel(nn.Module):
|
|
|
+
|
|
|
+ def __init__(self, config: LlamaConfig):
|
|
|
+ super().__init__()
|
|
|
+ self.config = config
|
|
|
+ self.padding_idx = config.pad_token_id
|
|
|
+ self.vocab_size = config.vocab_size
|
|
|
+
|
|
|
+ self.embed_tokens = VocabParallelEmbedding(config.vocab_size, config.hidden_size, perform_initialization=False)
|
|
|
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
|
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ input_ids: torch.Tensor,
|
|
|
+ positions: torch.Tensor,
|
|
|
+ kv_caches: List[KVCache],
|
|
|
+ input_metadata: InputMetadata,
|
|
|
+ cache_events: Optional[List[torch.cuda.Event]],
|
|
|
+ ) -> torch.Tensor:
|
|
|
+ hidden_states = self.embed_tokens(input_ids)
|
|
|
+ for i in range(len(self.layers)):
|
|
|
+ if cache_events is None:
|
|
|
+ cache_event = None
|
|
|
+ else:
|
|
|
+ cache_event = cache_events[i]
|
|
|
+ layer = self.layers[i]
|
|
|
+ hidden_states = layer(
|
|
|
+ positions,
|
|
|
+ hidden_states,
|
|
|
+ kv_caches[i],
|
|
|
+ input_metadata,
|
|
|
+ cache_event,
|
|
|
+ )
|
|
|
+ hidden_states = self.norm(hidden_states)
|
|
|
+ return hidden_states
|
|
|
+
|
|
|
+
|
|
|
+class LlamaForCausalLM(nn.Module):
|
|
|
+
|
|
|
+ def __init__(self, config):
|
|
|
+ super().__init__()
|
|
|
+ self.config = config
|
|
|
+ self.model = LlamaModel(config)
|
|
|
+ self.lm_head = ColumnParallelLinear(config.hidden_size,
|
|
|
+ config.vocab_size,
|
|
|
+ bias=False,
|
|
|
+ gather_output=False,
|
|
|
+ perform_initialization=False)
|
|
|
+ self.sampler = Sampler(config.vocab_size)
|
|
|
+
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ input_ids: torch.Tensor,
|
|
|
+ positions: torch.Tensor,
|
|
|
+ kv_caches: List[KVCache],
|
|
|
+ input_metadata: InputMetadata,
|
|
|
+ cache_events: Optional[List[torch.cuda.Event]],
|
|
|
+ ) -> Dict[int, SequenceOutputs]:
|
|
|
+ hidden_states = self.model(
|
|
|
+ input_ids, positions, kv_caches, input_metadata, cache_events)
|
|
|
+ next_tokens = self.sampler(
|
|
|
+ self.lm_head.weight, hidden_states, input_metadata)
|
|
|
+ return next_tokens
|
|
|
+
|
|
|
+ _column_parallel_weights = ["embed_tokens.weight", "lm_head.weight",
|
|
|
+ "qkv_proj.weight", "gate_proj.weight",
|
|
|
+ "up_proj.weight"]
|
|
|
+ _row_parallel_weights = ["o_proj.weight", "down_proj.weight"]
|
|
|
+
|
|
|
+ def load_weights(self, model_name_or_path: str, cache_dir: Optional[str] = None, use_np_cache: bool = False):
|
|
|
+ tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
|
|
+ state_dict = self.state_dict()
|
|
|
+
|
|
|
+ for name, loaded_weight in hf_model_weights_iterator(
|
|
|
+ model_name_or_path, cache_dir, use_np_cache):
|
|
|
+ if "rotary_emb.inv_freq" in name:
|
|
|
+ continue
|
|
|
+
|
|
|
+ is_attention_weight = False
|
|
|
+ for stride_id, att_weight_name in enumerate(["q_proj", "k_proj", "v_proj"]):
|
|
|
+ if att_weight_name not in name:
|
|
|
+ continue
|
|
|
+ param = state_dict[name.replace(att_weight_name, "qkv_proj")]
|
|
|
+ shard_size = param.shape[0] // 3
|
|
|
+ loaded_weight = loaded_weight[
|
|
|
+ shard_size * tensor_model_parallel_rank
|
|
|
+ :shard_size * (tensor_model_parallel_rank + 1)]
|
|
|
+ param_slice = param.data[shard_size * stride_id
|
|
|
+ :shard_size * (stride_id + 1)]
|
|
|
+ assert param_slice.shape == loaded_weight.shape
|
|
|
+ param_slice.copy_(loaded_weight)
|
|
|
+ is_attention_weight = True
|
|
|
+ break
|
|
|
+ if is_attention_weight:
|
|
|
+ continue
|
|
|
+
|
|
|
+ is_gate_up_weight = False
|
|
|
+ for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
|
|
|
+ if weight_name not in name:
|
|
|
+ continue
|
|
|
+ param = state_dict[name.replace(weight_name, "gate_up_proj")]
|
|
|
+ shard_size = param.shape[0] // 2
|
|
|
+ loaded_weight = loaded_weight[
|
|
|
+ shard_size * tensor_model_parallel_rank
|
|
|
+ :shard_size * (tensor_model_parallel_rank + 1)]
|
|
|
+ param_slice = param.data[shard_size * stride_id
|
|
|
+ :shard_size * (stride_id + 1)]
|
|
|
+ assert param_slice.shape == loaded_weight.shape
|
|
|
+ param_slice.copy_(loaded_weight)
|
|
|
+ is_gate_up_weight = True
|
|
|
+ break
|
|
|
+ if is_gate_up_weight:
|
|
|
+ continue
|
|
|
+
|
|
|
+
|
|
|
+ param = state_dict[name]
|
|
|
+ load_tensor_parallel_weights(param, loaded_weights, name,
|
|
|
+ self._column_parallel_weights,
|
|
|
+ self._row_parallel_weights,
|
|
|
+ tensor_model_parallel_rank)
|