|
@@ -61,10 +61,14 @@ if TYPE_CHECKING:
|
|
|
|
|
|
LORA_WARMUP_RANK = 8
|
|
|
_BATCH_SIZE_ALIGNMENT = 8
|
|
|
-# Capture graphs for token size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256.
|
|
|
+# all the token sizes that **can** be captured by cudagraph.
|
|
|
+# they can be arbitrarily large.
|
|
|
+# currently it includes: 1, 2, 4, 8, 16, 24, 32, 40, ..., 8192.
|
|
|
+# the actual sizes to capture will be determined by the model,
|
|
|
+# depending on the model's max_num_seqs.
|
|
|
# NOTE: _get_graph_batch_size needs to be updated if this list is changed.
|
|
|
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
|
|
|
- _BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
|
|
|
+ _BATCH_SIZE_ALIGNMENT * i for i in range(1, 1025)
|
|
|
]
|
|
|
_NUM_WARMUP_ITERS = 2
|
|
|
|
|
@@ -660,7 +664,7 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
|
|
|
def _use_captured_graph(self, batch_size: int,
|
|
|
max_decode_seq_len: int) -> bool:
|
|
|
return (self.decode_only and not self.runner.model_config.enforce_eager
|
|
|
- and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
|
|
|
+ and batch_size <= self.runner.max_batchsize_to_capture
|
|
|
and max_decode_seq_len <= self.runner.max_seq_len_to_capture)
|
|
|
|
|
|
def build(self) -> ModelInputForGPU:
|
|
@@ -842,6 +846,8 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
|
|
|
self.sliding_window = model_config.get_sliding_window()
|
|
|
self.block_size = cache_config.block_size
|
|
|
self.max_seq_len_to_capture = self.model_config.max_seq_len_to_capture
|
|
|
+ self.max_batchsize_to_capture = _get_max_graph_batch_size(
|
|
|
+ self.scheduler_config.max_num_seqs)
|
|
|
|
|
|
self.graph_runners: List[Dict[int, CUDAGraphRunner]] = [
|
|
|
{} for _ in range(self.parallel_config.pipeline_parallel_size)
|
|
@@ -858,7 +864,7 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
|
|
|
# The shape of the cached block table will be
|
|
|
# (max batch size to capture, max context len to capture / block size).
|
|
|
self.graph_block_tables = np.zeros(
|
|
|
- (max(_BATCH_SIZES_TO_CAPTURE), self.get_max_block_per_batch()),
|
|
|
+ (self.max_batchsize_to_capture, self.get_max_block_per_batch()),
|
|
|
dtype=np.int32)
|
|
|
self.attn_backend = get_attn_backend(
|
|
|
self.model_config.get_head_size(),
|
|
@@ -1271,7 +1277,7 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
|
|
|
start_time = time.perf_counter()
|
|
|
|
|
|
# Prepare dummy inputs. These will be reused for all batch sizes.
|
|
|
- max_batch_size = max(_BATCH_SIZES_TO_CAPTURE)
|
|
|
+ max_batch_size = self.max_batchsize_to_capture
|
|
|
input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda()
|
|
|
input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda()
|
|
|
# Prepare dummy previous_hidden_states only if needed by the model.
|
|
@@ -1297,8 +1303,8 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
|
|
|
None
|
|
|
] * self.parallel_config.pipeline_parallel_size
|
|
|
|
|
|
- graph_batch_size = _get_graph_batch_size(
|
|
|
- self.scheduler_config.max_num_seqs)
|
|
|
+
|
|
|
+ graph_batch_size = self.max_batchsize_to_capture
|
|
|
batch_size_capture_list = [
|
|
|
bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size
|
|
|
]
|
|
@@ -1685,3 +1691,20 @@ def _get_graph_batch_size(batch_size: int) -> int:
|
|
|
else:
|
|
|
return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) //
|
|
|
_BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT)
|
|
|
+
|
|
|
+
|
|
|
+def _get_max_graph_batch_size(max_num_seqs: int) -> int:
|
|
|
+ """
|
|
|
+ max_num_seqs: Maximum number of sequences in a batch.
|
|
|
+ _BATCH_SIZES_TO_CAPTURE: all the sizes that we want to capture.
|
|
|
+ pad the max_num_seqs if necessary by calling _get_graph_batch_size,
|
|
|
+ which will deal with some edge cases like 1, 2, 4.
|
|
|
+ if the padded size is in _BATCH_SIZES_TO_CAPTURE, return the padded size.
|
|
|
+ if not, it means the padded size is larger than the largest size in
|
|
|
+ _BATCH_SIZES_TO_CAPTURE, return the largest size in _BATCH_SIZES_TO_CAPTURE.
|
|
|
+ """
|
|
|
+ padded_size = _get_graph_batch_size(max_num_seqs)
|
|
|
+ if padded_size in _BATCH_SIZES_TO_CAPTURE:
|
|
|
+ return padded_size
|
|
|
+ assert padded_size > _BATCH_SIZES_TO_CAPTURE[-1]
|
|
|
+ return _BATCH_SIZES_TO_CAPTURE[-1]
|