|
@@ -0,0 +1,42 @@
|
|
|
+from typing import List
|
|
|
+from aphrodite import LLM, SamplingParams
|
|
|
+from aphrodite.inputs import PromptInputs
|
|
|
+
|
|
|
+llm = LLM(
|
|
|
+ model="NousResearch/Meta-Llama-3.1-8B-Instruct",
|
|
|
+ use_v2_block_manager=True,
|
|
|
+ cfg_model="NousResearch/Meta-Llama-3.1-8B-Instruct",
|
|
|
+ max_model_len=8192,
|
|
|
+)
|
|
|
+
|
|
|
+prompt_pairs = [
|
|
|
+ {
|
|
|
+ "prompt": "Hello, my name is",
|
|
|
+ "negative_prompt": "I am uncertain and confused about who I am"
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "prompt": "The president of the United States is",
|
|
|
+ "negative_prompt": "I don't know anything about US politics or leadership"
|
|
|
+ },
|
|
|
+]
|
|
|
+
|
|
|
+tokenizer = llm.get_tokenizer()
|
|
|
+
|
|
|
+inputs: List[PromptInputs] = [
|
|
|
+ {
|
|
|
+ "prompt_token_ids": tokenizer.encode(text=pair["prompt"]),
|
|
|
+ "negative_prompt_token_ids": tokenizer.encode(text=pair["negative_prompt"])
|
|
|
+ }
|
|
|
+ for pair in prompt_pairs
|
|
|
+]
|
|
|
+
|
|
|
+sampling_params = SamplingParams(guidance_scale=5.0, max_tokens=128)
|
|
|
+outputs = llm.generate(inputs, sampling_params)
|
|
|
+
|
|
|
+for i, output in enumerate(outputs):
|
|
|
+ prompt_pair = prompt_pairs[i]
|
|
|
+ generated_text = output.outputs[0].text
|
|
|
+ print(f"Prompt: {prompt_pair['prompt']!r}")
|
|
|
+ print(f"Negative Prompt: {prompt_pair['negative_prompt']!r}")
|
|
|
+ print(f"Generated text: {generated_text!r}")
|
|
|
+ print("-" * 50)
|