|
@@ -0,0 +1,619 @@
|
|
|
+# coding=utf-8
|
|
|
+# Adapted from
|
|
|
+# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
|
+# Copyright 2023 The vLLM team.
|
|
|
+# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
|
+#
|
|
|
+# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
|
+# and OPT implementations in this library. It has been modified from its
|
|
|
+# original forms to accommodate minor architectural differences compared
|
|
|
+# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+"""Inference-only PhiMoE model."""
|
|
|
+from typing import Iterable, List, Optional, Tuple
|
|
|
+
|
|
|
+import torch
|
|
|
+from torch import nn
|
|
|
+from transformers.configuration_utils import PretrainedConfig
|
|
|
+
|
|
|
+from aphrodite.attention import Attention, AttentionMetadata
|
|
|
+from aphrodite.common.config import CacheConfig, LoRAConfig
|
|
|
+from aphrodite.common.sequence import IntermediateTensors
|
|
|
+from aphrodite.distributed import get_tensor_model_parallel_world_size
|
|
|
+from aphrodite.modeling.layers.fused_moe import FusedMoE
|
|
|
+from aphrodite.modeling.layers.linear import (QKVParallelLinear,
|
|
|
+ ReplicatedLinear,
|
|
|
+ RowParallelLinear)
|
|
|
+from aphrodite.modeling.layers.logits_processor import LogitsProcessor
|
|
|
+from aphrodite.modeling.layers.rotary_embedding import get_rope
|
|
|
+from aphrodite.modeling.layers.sampler import Sampler, SamplerOutput
|
|
|
+from aphrodite.modeling.layers.vocab_parallel_embedding import (
|
|
|
+ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
|
|
+from aphrodite.modeling.model_loader.weight_utils import (
|
|
|
+ default_weight_loader, maybe_remap_kv_scale_name)
|
|
|
+from aphrodite.modeling.sampling_metadata import SamplingMetadata
|
|
|
+from aphrodite.quantization.base_config import QuantizationConfig
|
|
|
+
|
|
|
+from .interfaces import SupportsLoRA
|
|
|
+
|
|
|
+
|
|
|
+class PhiMoEConfig(PretrainedConfig):
|
|
|
+
|
|
|
+ model_type = "phimoe"
|
|
|
+ keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ vocab_size=32000,
|
|
|
+ hidden_size=4096,
|
|
|
+ intermediate_size=14336,
|
|
|
+ num_hidden_layers=32,
|
|
|
+ num_attention_heads=32,
|
|
|
+ num_key_value_heads=8,
|
|
|
+ hidden_act="silu",
|
|
|
+ max_position_embeddings=4096 * 32,
|
|
|
+ initializer_range=0.02,
|
|
|
+ rms_norm_eps=1e-5,
|
|
|
+ use_cache=True,
|
|
|
+ pad_token_id=None,
|
|
|
+ bos_token_id=1,
|
|
|
+ eos_token_id=2,
|
|
|
+ tie_word_embeddings=False,
|
|
|
+ rope_theta=1e6,
|
|
|
+ sliding_window=None,
|
|
|
+ attention_dropout=0.0,
|
|
|
+ num_experts_per_tok=2,
|
|
|
+ num_local_experts=16,
|
|
|
+ output_router_logits=False,
|
|
|
+ router_aux_loss_coef=0.001,
|
|
|
+ router_jitter_noise=0.0,
|
|
|
+ attention_bias=False,
|
|
|
+ lm_head_bias=False,
|
|
|
+ **kwargs,
|
|
|
+ ):
|
|
|
+ self.vocab_size = vocab_size
|
|
|
+ self.max_position_embeddings = max_position_embeddings
|
|
|
+ self.hidden_size = hidden_size
|
|
|
+ self.intermediate_size = intermediate_size
|
|
|
+ self.num_hidden_layers = num_hidden_layers
|
|
|
+ self.num_attention_heads = num_attention_heads
|
|
|
+ self.sliding_window = sliding_window
|
|
|
+ self.attention_bias = attention_bias
|
|
|
+ self.lm_head_bias = lm_head_bias
|
|
|
+ # for backward compatibility
|
|
|
+ if num_key_value_heads is None:
|
|
|
+ num_key_value_heads = num_attention_heads
|
|
|
+
|
|
|
+ self.num_key_value_heads = num_key_value_heads
|
|
|
+ self.hidden_act = hidden_act
|
|
|
+ self.initializer_range = initializer_range
|
|
|
+ self.rms_norm_eps = rms_norm_eps
|
|
|
+ self.use_cache = use_cache
|
|
|
+ self.rope_theta = rope_theta
|
|
|
+ self.attention_dropout = attention_dropout
|
|
|
+
|
|
|
+ self.num_experts_per_tok = num_experts_per_tok
|
|
|
+ self.num_local_experts = num_local_experts
|
|
|
+ self.output_router_logits = output_router_logits
|
|
|
+ self.router_aux_loss_coef = router_aux_loss_coef
|
|
|
+ self.router_jitter_noise = router_jitter_noise
|
|
|
+ super().__init__(
|
|
|
+ pad_token_id=pad_token_id,
|
|
|
+ bos_token_id=bos_token_id,
|
|
|
+ eos_token_id=eos_token_id,
|
|
|
+ tie_word_embeddings=tie_word_embeddings,
|
|
|
+ **kwargs,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+class mp(torch.autograd.Function):
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def forward(
|
|
|
+ ctx,
|
|
|
+ scores: torch.Tensor,
|
|
|
+ multiplier: torch.Tensor,
|
|
|
+ selected_experts: torch.Tensor,
|
|
|
+ masked_gates: torch.Tensor,
|
|
|
+ mask_for_one: torch.Tensor,
|
|
|
+ ):
|
|
|
+ ctx.save_for_backward(multiplier, selected_experts, masked_gates)
|
|
|
+ return multiplier * mask_for_one
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def backward(
|
|
|
+ ctx,
|
|
|
+ grad_at_output: torch.Tensor,
|
|
|
+ ):
|
|
|
+ multiplier, selected_experts, masked_gates = ctx.saved_tensors
|
|
|
+
|
|
|
+ grad_at_output = grad_at_output * multiplier
|
|
|
+
|
|
|
+ grad_at_scores_expaned = masked_gates * grad_at_output.mul(-1)
|
|
|
+ grad_at_scores_expaned.scatter_add_(
|
|
|
+ dim=-1,
|
|
|
+ index=selected_experts,
|
|
|
+ src=grad_at_output,
|
|
|
+ )
|
|
|
+
|
|
|
+ return (
|
|
|
+ grad_at_scores_expaned,
|
|
|
+ None,
|
|
|
+ None,
|
|
|
+ None,
|
|
|
+ None,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def sparsemixer(scores, jitter_eps=0.01):
|
|
|
+ ################ first expert ################
|
|
|
+
|
|
|
+ with torch.no_grad():
|
|
|
+ # compute mask for sparsity
|
|
|
+ mask_logits_threshold, max_ind = scores.max(dim=-1, keepdim=True)
|
|
|
+ factor = scores.abs().clamp(min=mask_logits_threshold)
|
|
|
+ mask_logits_threshold = (
|
|
|
+ (mask_logits_threshold - scores) / factor) > (2 * jitter_eps)
|
|
|
+
|
|
|
+ # apply mask
|
|
|
+ masked_gates = scores.masked_fill(mask_logits_threshold, float("-inf"))
|
|
|
+ selected_experts = max_ind
|
|
|
+
|
|
|
+ # compute scores for gradients
|
|
|
+ masked_gates = torch.softmax(masked_gates, dim=-1)
|
|
|
+ multiplier_o = masked_gates.gather(dim=-1, index=selected_experts)
|
|
|
+
|
|
|
+ multiplier = multiplier_o
|
|
|
+
|
|
|
+ # masked out first expert
|
|
|
+ masked_scores = torch.scatter(
|
|
|
+ scores,
|
|
|
+ -1,
|
|
|
+ selected_experts,
|
|
|
+ float("-inf"),
|
|
|
+ )
|
|
|
+ with torch.no_grad():
|
|
|
+ # compute mask for sparsity
|
|
|
+ mask_logits_threshold, max_ind = masked_scores.max(dim=-1,
|
|
|
+ keepdim=True)
|
|
|
+ factor = scores.abs().clamp(min=mask_logits_threshold)
|
|
|
+ mask_logits_threshold = (
|
|
|
+ (mask_logits_threshold - scores) / factor) > (2 * jitter_eps)
|
|
|
+
|
|
|
+ # apply mask
|
|
|
+ masked_gates_top2 = masked_scores.masked_fill(mask_logits_threshold,
|
|
|
+ float("-inf"))
|
|
|
+ selected_experts_top2 = max_ind
|
|
|
+ # compute scores for gradients
|
|
|
+ masked_gates_top2 = torch.softmax(masked_gates_top2, dim=-1)
|
|
|
+ multiplier_top2 = masked_gates_top2.gather(dim=-1,
|
|
|
+ index=selected_experts_top2)
|
|
|
+
|
|
|
+ multiplier = torch.concat((multiplier, multiplier_top2), dim=-1)
|
|
|
+ selected_experts = torch.concat((selected_experts, selected_experts_top2),
|
|
|
+ dim=-1)
|
|
|
+
|
|
|
+ return (
|
|
|
+ multiplier,
|
|
|
+ selected_experts,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def phimoe_routing_function(
|
|
|
+ hidden_states: torch.Tensor,
|
|
|
+ gating_output: torch.Tensor,
|
|
|
+ topk: int,
|
|
|
+ renormalize: bool,
|
|
|
+):
|
|
|
+ assert hidden_states.shape[0] == gating_output.shape[0], (
|
|
|
+ "Number of tokens mismatch")
|
|
|
+ assert topk == 2, "Only top-2 routing is supported"
|
|
|
+ assert renormalize is False, "Renormalization is not supported"
|
|
|
+
|
|
|
+ topk_weights, topk_ids = sparsemixer(gating_output)
|
|
|
+ return topk_weights, topk_ids
|
|
|
+
|
|
|
+
|
|
|
+class PhiMoE(nn.Module):
|
|
|
+ """A tensor-parallel MoE implementation for PhiMoE that shards each expert
|
|
|
+ across all ranks.
|
|
|
+
|
|
|
+ Each expert's weights are sharded across all ranks and a fused MoE
|
|
|
+ kernel is used for the forward pass, and finally we reduce the outputs
|
|
|
+ across ranks.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ num_experts: int,
|
|
|
+ top_k: int,
|
|
|
+ hidden_size: int,
|
|
|
+ intermediate_size: int,
|
|
|
+ params_dtype: Optional[torch.dtype] = None,
|
|
|
+ quant_config: Optional[QuantizationConfig] = None,
|
|
|
+ tp_size: Optional[int] = None,
|
|
|
+ ):
|
|
|
+ super().__init__()
|
|
|
+ self.hidden_size = hidden_size
|
|
|
+
|
|
|
+ # Gate always runs at half / full precision for now.
|
|
|
+ self.gate = ReplicatedLinear(
|
|
|
+ hidden_size,
|
|
|
+ num_experts,
|
|
|
+ bias=False,
|
|
|
+ params_dtype=params_dtype,
|
|
|
+ quant_config=None,
|
|
|
+ )
|
|
|
+
|
|
|
+ self.experts = FusedMoE(
|
|
|
+ num_experts=num_experts,
|
|
|
+ top_k=top_k,
|
|
|
+ hidden_size=hidden_size,
|
|
|
+ intermediate_size=intermediate_size,
|
|
|
+ params_dtype=params_dtype,
|
|
|
+ reduce_results=True,
|
|
|
+ renormalize=False,
|
|
|
+ quant_config=quant_config,
|
|
|
+ tp_size=tp_size,
|
|
|
+ custom_routing_function=phimoe_routing_function)
|
|
|
+
|
|
|
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
|
+ # NOTE: hidden_states can have either 1D or 2D shape.
|
|
|
+ orig_shape = hidden_states.shape
|
|
|
+ hidden_states = hidden_states.view(-1, self.hidden_size)
|
|
|
+ # router_logits: (num_tokens, n_experts)
|
|
|
+ router_logits, _ = self.gate(hidden_states)
|
|
|
+ final_hidden_states = self.experts(hidden_states, router_logits)
|
|
|
+ return final_hidden_states.view(orig_shape)
|
|
|
+
|
|
|
+
|
|
|
+class PhiMoEAttention(nn.Module):
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ hidden_size: int,
|
|
|
+ num_heads: int,
|
|
|
+ num_kv_heads: int,
|
|
|
+ max_position: int = 4096 * 32,
|
|
|
+ rope_theta: float = 10000,
|
|
|
+ cache_config: Optional[CacheConfig] = None,
|
|
|
+ quant_config: Optional[QuantizationConfig] = None,
|
|
|
+ rope_scaling: Optional[dict] = None,
|
|
|
+ ) -> None:
|
|
|
+ super().__init__()
|
|
|
+ self.hidden_size = hidden_size
|
|
|
+ tp_size = get_tensor_model_parallel_world_size()
|
|
|
+ self.total_num_heads = num_heads
|
|
|
+ assert self.total_num_heads % tp_size == 0
|
|
|
+ self.num_heads = self.total_num_heads // tp_size
|
|
|
+ self.total_num_kv_heads = num_kv_heads
|
|
|
+ if self.total_num_kv_heads >= tp_size:
|
|
|
+ # Number of KV heads is greater than TP size, so we partition
|
|
|
+ # the KV heads across multiple tensor parallel GPUs.
|
|
|
+ assert self.total_num_kv_heads % tp_size == 0
|
|
|
+ else:
|
|
|
+ # Number of KV heads is less than TP size, so we replicate
|
|
|
+ # the KV heads across multiple tensor parallel GPUs.
|
|
|
+ assert tp_size % self.total_num_kv_heads == 0
|
|
|
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
|
+ self.head_dim = hidden_size // self.total_num_heads
|
|
|
+ self.q_size = self.num_heads * self.head_dim
|
|
|
+ self.kv_size = self.num_kv_heads * self.head_dim
|
|
|
+ self.scaling = self.head_dim**-0.5
|
|
|
+ self.rope_theta = rope_theta
|
|
|
+ self.rope_scaling = rope_scaling
|
|
|
+
|
|
|
+ self.qkv_proj = QKVParallelLinear(
|
|
|
+ hidden_size,
|
|
|
+ self.head_dim,
|
|
|
+ self.total_num_heads,
|
|
|
+ self.total_num_kv_heads,
|
|
|
+ bias=True,
|
|
|
+ quant_config=None,
|
|
|
+ )
|
|
|
+ self.o_proj = RowParallelLinear(
|
|
|
+ self.total_num_heads * self.head_dim,
|
|
|
+ hidden_size,
|
|
|
+ bias=True,
|
|
|
+ quant_config=None,
|
|
|
+ )
|
|
|
+ self.rotary_emb = get_rope(
|
|
|
+ self.head_dim,
|
|
|
+ rotary_dim=self.head_dim,
|
|
|
+ max_position=max_position,
|
|
|
+ base=int(self.rope_theta),
|
|
|
+ is_neox_style=True,
|
|
|
+ rope_scaling=self.rope_scaling,
|
|
|
+ )
|
|
|
+ self.attn = Attention(
|
|
|
+ self.num_heads,
|
|
|
+ self.head_dim,
|
|
|
+ self.scaling,
|
|
|
+ num_kv_heads=self.num_kv_heads,
|
|
|
+ cache_config=cache_config,
|
|
|
+ quant_config=quant_config,
|
|
|
+ )
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ positions: torch.Tensor,
|
|
|
+ hidden_states: torch.Tensor,
|
|
|
+ kv_cache: torch.Tensor,
|
|
|
+ attn_metadata: AttentionMetadata,
|
|
|
+ ) -> torch.Tensor:
|
|
|
+ qkv, _ = self.qkv_proj(hidden_states)
|
|
|
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
|
+ q, k = self.rotary_emb(positions, q, k)
|
|
|
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
|
|
+ output, _ = self.o_proj(attn_output)
|
|
|
+ return output
|
|
|
+
|
|
|
+
|
|
|
+class PhiMoEDecoderLayer(nn.Module):
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ config: PhiMoEConfig,
|
|
|
+ cache_config: Optional[CacheConfig] = None,
|
|
|
+ quant_config: Optional[QuantizationConfig] = None,
|
|
|
+ ) -> None:
|
|
|
+ super().__init__()
|
|
|
+ self.hidden_size = config.hidden_size
|
|
|
+ # Requires transformers > 4.32.0
|
|
|
+ rope_theta = getattr(config, "rope_theta", 10000)
|
|
|
+ self.self_attn = PhiMoEAttention(
|
|
|
+ hidden_size=self.hidden_size,
|
|
|
+ num_heads=config.num_attention_heads,
|
|
|
+ max_position=config.max_position_embeddings,
|
|
|
+ num_kv_heads=config.num_key_value_heads,
|
|
|
+ rope_theta=rope_theta,
|
|
|
+ cache_config=cache_config,
|
|
|
+ quant_config=quant_config,
|
|
|
+ rope_scaling=config.rope_scaling,
|
|
|
+ )
|
|
|
+ self.block_sparse_moe = PhiMoE(
|
|
|
+ num_experts=config.num_local_experts,
|
|
|
+ top_k=config.num_experts_per_tok,
|
|
|
+ hidden_size=config.hidden_size,
|
|
|
+ intermediate_size=config.intermediate_size,
|
|
|
+ quant_config=quant_config,
|
|
|
+ )
|
|
|
+ self.input_layernorm = nn.LayerNorm(config.hidden_size,
|
|
|
+ eps=config.rms_norm_eps,
|
|
|
+ elementwise_affine=True)
|
|
|
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
|
|
|
+ eps=config.rms_norm_eps,
|
|
|
+ elementwise_affine=True)
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ positions: torch.Tensor,
|
|
|
+ hidden_states: torch.Tensor,
|
|
|
+ kv_cache: torch.Tensor,
|
|
|
+ attn_metadata: AttentionMetadata,
|
|
|
+ residual: Optional[torch.Tensor],
|
|
|
+ ) -> torch.Tensor:
|
|
|
+ residual = hidden_states
|
|
|
+
|
|
|
+ # Self Attention
|
|
|
+ hidden_states = self.input_layernorm(hidden_states)
|
|
|
+
|
|
|
+ hidden_states = self.self_attn(
|
|
|
+ positions=positions,
|
|
|
+ hidden_states=hidden_states,
|
|
|
+ kv_cache=kv_cache,
|
|
|
+ attn_metadata=attn_metadata,
|
|
|
+ )
|
|
|
+ hidden_states = hidden_states + residual
|
|
|
+
|
|
|
+ # Fully Connected
|
|
|
+ residual = hidden_states
|
|
|
+ hidden_states = self.post_attention_layernorm(hidden_states)
|
|
|
+ hidden_states = self.block_sparse_moe(hidden_states)
|
|
|
+
|
|
|
+ hidden_states = hidden_states + residual
|
|
|
+ return hidden_states, residual
|
|
|
+
|
|
|
+
|
|
|
+class PhiMoEModel(nn.Module):
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ config: PhiMoEConfig,
|
|
|
+ cache_config: Optional[CacheConfig] = None,
|
|
|
+ quant_config: Optional[QuantizationConfig] = None,
|
|
|
+ lora_config: Optional[LoRAConfig] = None,
|
|
|
+ ) -> None:
|
|
|
+ super().__init__()
|
|
|
+ self.padding_idx = config.pad_token_id
|
|
|
+ lora_vocab = ((lora_config.lora_extra_vocab_size *
|
|
|
+ (lora_config.max_loras or 1)) if lora_config else 0)
|
|
|
+ self.vocab_size = config.vocab_size + lora_vocab
|
|
|
+ self.org_vocab_size = config.vocab_size
|
|
|
+
|
|
|
+ self.embed_tokens = VocabParallelEmbedding(
|
|
|
+ self.vocab_size,
|
|
|
+ config.hidden_size,
|
|
|
+ org_num_embeddings=config.vocab_size,
|
|
|
+ )
|
|
|
+ self.layers = nn.ModuleList([
|
|
|
+ PhiMoEDecoderLayer(config, cache_config, quant_config=quant_config)
|
|
|
+ for _ in range(config.num_hidden_layers)
|
|
|
+ ])
|
|
|
+ self.norm = nn.LayerNorm(config.hidden_size,
|
|
|
+ eps=config.rms_norm_eps,
|
|
|
+ elementwise_affine=True)
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ input_ids: torch.Tensor,
|
|
|
+ positions: torch.Tensor,
|
|
|
+ kv_caches: List[torch.Tensor],
|
|
|
+ attn_metadata: AttentionMetadata,
|
|
|
+ ) -> torch.Tensor:
|
|
|
+ hidden_states = self.embed_tokens(input_ids)
|
|
|
+ residual = None
|
|
|
+ for i in range(len(self.layers)):
|
|
|
+ layer = self.layers[i]
|
|
|
+ hidden_states, residual = layer(positions, hidden_states,
|
|
|
+ kv_caches[i], attn_metadata,
|
|
|
+ residual)
|
|
|
+ hidden_states = self.norm(hidden_states)
|
|
|
+ return hidden_states
|
|
|
+
|
|
|
+
|
|
|
+class PhiMoEForCausalLM(nn.Module, SupportsLoRA):
|
|
|
+ fall_back_to_pt_during_load = False
|
|
|
+
|
|
|
+ packed_modules_mapping = {
|
|
|
+ "qkv_proj": [
|
|
|
+ "q_proj",
|
|
|
+ "k_proj",
|
|
|
+ "v_proj",
|
|
|
+ ],
|
|
|
+ }
|
|
|
+
|
|
|
+ # LoRA specific attributes
|
|
|
+ supported_lora_modules = [
|
|
|
+ "qkv_proj",
|
|
|
+ "o_proj",
|
|
|
+ "embed_tokens",
|
|
|
+ "lm_head",
|
|
|
+ ]
|
|
|
+ embedding_modules = {
|
|
|
+ "embed_tokens": "input_embeddings",
|
|
|
+ "lm_head": "output_embeddings",
|
|
|
+ }
|
|
|
+ embedding_padding_modules = ["lm_head"]
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ config: PhiMoEConfig,
|
|
|
+ cache_config: Optional[CacheConfig] = None,
|
|
|
+ quant_config: Optional[QuantizationConfig] = None,
|
|
|
+ lora_config: Optional[LoRAConfig] = None,
|
|
|
+ ) -> None:
|
|
|
+ super().__init__()
|
|
|
+
|
|
|
+ self.config = config
|
|
|
+ self.lora_config = lora_config
|
|
|
+
|
|
|
+ self.model = PhiMoEModel(config,
|
|
|
+ cache_config,
|
|
|
+ quant_config,
|
|
|
+ lora_config=lora_config)
|
|
|
+ self.unpadded_vocab_size = config.vocab_size
|
|
|
+ if lora_config:
|
|
|
+ self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
|
|
+ self.lm_head = ParallelLMHead(
|
|
|
+ self.unpadded_vocab_size,
|
|
|
+ config.hidden_size,
|
|
|
+ org_num_embeddings=config.vocab_size,
|
|
|
+ padding_size=(
|
|
|
+ DEFAULT_VOCAB_PADDING_SIZE
|
|
|
+ # We need bigger padding if using lora for kernel
|
|
|
+ # compatibility
|
|
|
+ if not lora_config else lora_config.lora_vocab_padding_size),
|
|
|
+ quant_config=None,
|
|
|
+ bias=True,
|
|
|
+ )
|
|
|
+ self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
|
|
+ config.vocab_size)
|
|
|
+ self.sampler = Sampler()
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ input_ids: torch.Tensor,
|
|
|
+ positions: torch.Tensor,
|
|
|
+ kv_caches: List[torch.Tensor],
|
|
|
+ attn_metadata: AttentionMetadata,
|
|
|
+ intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
|
+ ) -> torch.Tensor:
|
|
|
+ hidden_states = self.model(input_ids, positions, kv_caches,
|
|
|
+ attn_metadata)
|
|
|
+ return hidden_states
|
|
|
+
|
|
|
+ def compute_logits(self, hidden_states: torch.Tensor,
|
|
|
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
|
|
+ logits = self.logits_processor(self.lm_head, hidden_states,
|
|
|
+ sampling_metadata)
|
|
|
+ return logits
|
|
|
+
|
|
|
+ def sample(
|
|
|
+ self,
|
|
|
+ logits: Optional[torch.Tensor],
|
|
|
+ sampling_metadata: SamplingMetadata,
|
|
|
+ ) -> Optional[SamplerOutput]:
|
|
|
+ next_tokens = self.sampler(logits, sampling_metadata)
|
|
|
+ return next_tokens
|
|
|
+
|
|
|
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
|
+ stacked_params_mapping = [
|
|
|
+ # (param_name, shard_name, shard_id)
|
|
|
+ ("qkv_proj", "q_proj", "q"),
|
|
|
+ ("qkv_proj", "k_proj", "k"),
|
|
|
+ ("qkv_proj", "v_proj", "v"),
|
|
|
+ ]
|
|
|
+
|
|
|
+ expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
|
|
+ ckpt_gate_proj_name="w1",
|
|
|
+ ckpt_down_proj_name="w2",
|
|
|
+ ckpt_up_proj_name="w3",
|
|
|
+ num_experts=self.config.num_local_experts)
|
|
|
+
|
|
|
+ params_dict = dict(self.named_parameters())
|
|
|
+ for name, loaded_weight in weights:
|
|
|
+ if "rotary_emb.inv_freq" in name:
|
|
|
+ continue
|
|
|
+
|
|
|
+ for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
|
+ if weight_name not in name:
|
|
|
+ continue
|
|
|
+ name = name.replace(weight_name, param_name)
|
|
|
+ # Skip loading extra bias for GPTQ models.
|
|
|
+ if name.endswith(".bias") and name not in params_dict:
|
|
|
+ continue
|
|
|
+ param = params_dict[name]
|
|
|
+ weight_loader = param.weight_loader
|
|
|
+ weight_loader(param, loaded_weight, shard_id)
|
|
|
+ break
|
|
|
+ else:
|
|
|
+ for mapping in expert_params_mapping:
|
|
|
+ param_name, weight_name, expert_id, shard_id = mapping
|
|
|
+ if weight_name not in name:
|
|
|
+ continue
|
|
|
+ name = name.replace(weight_name, param_name)
|
|
|
+ param = params_dict[name]
|
|
|
+ weight_loader = param.weight_loader
|
|
|
+ weight_loader(
|
|
|
+ param,
|
|
|
+ loaded_weight,
|
|
|
+ name,
|
|
|
+ shard_id=shard_id,
|
|
|
+ expert_id=expert_id,
|
|
|
+ )
|
|
|
+ break
|
|
|
+ else:
|
|
|
+ # Skip loading extra bias for GPTQ models.
|
|
|
+ if name.endswith(".bias") and name not in params_dict:
|
|
|
+ continue
|
|
|
+ # Remapping the name of FP8 kv-scale.
|
|
|
+ name = maybe_remap_kv_scale_name(name, params_dict)
|
|
|
+ if name is None:
|
|
|
+ continue
|
|
|
+
|
|
|
+ param = params_dict[name]
|
|
|
+ weight_loader = getattr(param, "weight_loader",
|
|
|
+ default_weight_loader)
|
|
|
+ weight_loader(param, loaded_weight)
|