|
@@ -1,771 +1,957 @@
|
|
|
/*
|
|
|
Adapted from https://github.com/mit-han-lab/llm-awq
|
|
|
@article{lin2023awq,
|
|
|
- title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
|
|
|
- author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
|
|
|
- journal={arXiv},
|
|
|
- year={2023}
|
|
|
+ title={AWQ: Activation-aware Weight Quantization for LLM Compression and
|
|
|
+Acceleration}, author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang,
|
|
|
+Shang and Dang, Xingyu and Han, Song}, journal={arXiv}, year={2023}
|
|
|
}
|
|
|
*/
|
|
|
|
|
|
+#include <torch/all.h>
|
|
|
+#include <c10/cuda/CUDAGuard.h>
|
|
|
|
|
|
- #include <torch/extension.h>
|
|
|
- #include <c10/cuda/CUDAGuard.h>
|
|
|
-
|
|
|
- #include "dequantize.cuh"
|
|
|
-
|
|
|
- #include <cuda_fp16.h>
|
|
|
-
|
|
|
- namespace aphrodite {
|
|
|
- namespace awq {
|
|
|
-
|
|
|
- // Pack two half values.
|
|
|
- static inline __device__ __host__ unsigned
|
|
|
- __pack_half2(const half x, const half y) {
|
|
|
- unsigned v0 = *((unsigned short *)&x);
|
|
|
- unsigned v1 = *((unsigned short *)&y);
|
|
|
- return (v1 << 16) | v0;
|
|
|
- }
|
|
|
-
|
|
|
- template<int N>
|
|
|
- __global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16nXk32(
|
|
|
- int G,
|
|
|
- int split_k_iters,
|
|
|
- half* __restrict__ A,
|
|
|
- int* __restrict__ B,
|
|
|
- half* __restrict__ scaling_factors,
|
|
|
- int* __restrict__ zeros,
|
|
|
- int M,
|
|
|
- int IC,
|
|
|
- int OC,
|
|
|
- half* __restrict__ C)
|
|
|
- {
|
|
|
- // Only support matrix n = 64 or 128
|
|
|
- assert(N == 64 || N == 128);
|
|
|
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
|
|
|
- assert(false);
|
|
|
- #else
|
|
|
- static constexpr uint32_t ZERO = 0x0;
|
|
|
- float C_warp[32];
|
|
|
- __shared__ half A_shared[16 * (32 + 8)];
|
|
|
- __shared__ half B_shared[32 * (N + 8)];
|
|
|
-
|
|
|
- __shared__ half scaling_factors_shared[N];
|
|
|
- __shared__ half zeros_shared[N];
|
|
|
-
|
|
|
- int j_factors1 = ((OC + N - 1) / N);
|
|
|
- int blockIdx_x = 0;
|
|
|
- int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
|
|
|
- int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);
|
|
|
-
|
|
|
- half A_shared_warp[8];
|
|
|
- half B_shared_warp[N / 4];
|
|
|
- for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
|
|
|
- for (int i = 0; i < 8; ++i) {
|
|
|
- C_warp[(j_0_4_init * 8) + i] = 0.0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- static constexpr int row_stride_warp = 32 * 8 / 32;
|
|
|
- static constexpr int row_stride = 2 * 32 * 8 / N;
|
|
|
- bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < N;
|
|
|
- // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
|
|
|
- bool ld_A_flag = (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32) < M; // threadIdx.y is warp_id
|
|
|
- // bool wb_C_flag = (threadIdx.x / 4) < M;
|
|
|
-
|
|
|
- half* A_ptr = A
|
|
|
- + (((int)blockIdx_y) / j_factors1 * 16 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
|
|
|
- + (((int)threadIdx.x) % (32 / 8)) * 8;
|
|
|
-
|
|
|
- int* B_ptr = B
|
|
|
- + ((int)threadIdx.y) * (OC / 8) * (256 / N)
|
|
|
- + (((int)threadIdx.x) / (N / 8)) * (OC / 8)
|
|
|
- + (((int)blockIdx_y) % j_factors1) * (N / 8)
|
|
|
- + (((int)threadIdx.x) % (N / 8)) * 1;
|
|
|
- // Why * 1 in the above line?
|
|
|
-
|
|
|
- half* A_shared_ptr = A_shared
|
|
|
- + ((int)threadIdx.y) * row_stride_warp * (32 + 8)
|
|
|
- + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
|
|
|
- + (((int)threadIdx.x) % (32 / 8) ) * 8;
|
|
|
-
|
|
|
- half* B_shared_ptr = B_shared
|
|
|
- + ((int)threadIdx.y) * (row_stride / 2) * (N + 8)
|
|
|
- + (((int)threadIdx.x) / (N / 8)) * (N + 8)
|
|
|
- + (((int)threadIdx.x) % (N / 8)) * 8;
|
|
|
-
|
|
|
- int* zeros_ptr = zeros
|
|
|
- + (((int)blockIdx_y) % j_factors1) * (N / 8)
|
|
|
- + ((int)threadIdx.x) % (N / 8);
|
|
|
-
|
|
|
- half* scaling_factors_ptr = scaling_factors
|
|
|
- + (((int)blockIdx_y) % j_factors1) * N
|
|
|
- + (((int)threadIdx.x) % (N / 8)) * 8;
|
|
|
-
|
|
|
- half* C_ptr = C
|
|
|
- + static_cast<long long>(blockIdx_z) * M * OC // blockIdz.x -> split_k dim
|
|
|
- + (((int)blockIdx_y) % j_factors1) * N
|
|
|
- + ((int)threadIdx.y) * (N / 2)
|
|
|
- + (((int)threadIdx.x) % 4) * 2;
|
|
|
-
|
|
|
- // preload s.f. and zeros
|
|
|
- int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
|
|
|
- if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
|
|
|
- for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
|
|
|
- int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
|
|
|
- __syncthreads();
|
|
|
- // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
|
|
|
- if (ld_A_flag)
|
|
|
- {
|
|
|
- *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
|
|
|
- }
|
|
|
-
|
|
|
- // for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
|
|
|
- uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
|
|
|
- uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
|
|
|
- uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
|
|
|
- /*
|
|
|
- if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 && threadIdx.y == 0){
|
|
|
- printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x, B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x, B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
|
|
|
- }
|
|
|
- */
|
|
|
- // uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
|
|
|
- int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
|
|
|
-
|
|
|
- for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {
|
|
|
-
|
|
|
- // B: 32 x 136 (128+8) float16
|
|
|
- // each warp: 32 x 4
|
|
|
- // each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
|
|
|
- // *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) * 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15) * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 * 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) * 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) * 8)));
|
|
|
- // row stride in shared memory: (NWARPS * 32 * 8 / cta_N)
|
|
|
- uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
|
|
|
- uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
|
|
|
- //uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N / 8)) * 8);
|
|
|
-
|
|
|
- // uint4 B_loaded_scale = *(uint4*)(scaling_factors_shared + (threadIdx.x % (cta_N / 8)) * 8);
|
|
|
- // - zero and * scale
|
|
|
- // TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
|
|
|
- /*
|
|
|
- if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 17 && threadIdx.y == 0){
|
|
|
- printf("[x] %X %X %X %X\n", B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
|
|
|
- }
|
|
|
- */
|
|
|
-
|
|
|
- // write back
|
|
|
- *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) = B_loaded_fp16;
|
|
|
- }
|
|
|
- __syncthreads();
|
|
|
-
|
|
|
- for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
|
|
|
- {
|
|
|
- unsigned int addr;
|
|
|
- __asm__ __volatile__(
|
|
|
- "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
|
|
|
- : "=r"(addr)
|
|
|
- : "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
|
|
|
- );
|
|
|
-
|
|
|
-
|
|
|
- __asm__ __volatile__(
|
|
|
- "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
|
|
|
- "{%0, %1, %2, %3}, [%4];\n"
|
|
|
- : "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
|
|
|
- : "r"(addr)
|
|
|
- );
|
|
|
- }
|
|
|
-
|
|
|
- for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
|
|
|
- {
|
|
|
- unsigned int addr;
|
|
|
- __asm__ __volatile__(
|
|
|
- "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
|
|
|
- : "=r"(addr)
|
|
|
- : "l"((void *)((&(B_shared[(((k_0_1 * (N * 16 + 128)) + (((int)threadIdx.y) * (N / 2))) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * (N + 8)) + ((((int)threadIdx.x) >> 4) * 8))))
|
|
|
- );
|
|
|
- __asm__ __volatile__(
|
|
|
- "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
|
|
|
- "{%0, %1, %2, %3}, [%4];\n"
|
|
|
- : "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
|
|
|
- : "r"(addr)
|
|
|
- );
|
|
|
- }
|
|
|
- }
|
|
|
- for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
|
|
|
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
- : "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
- : "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
- : "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
- : "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
|
|
|
- : "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
|
|
|
- : "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- #endif
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // TODO: Shang: Hoist loop invariance.
|
|
|
- for (int ax1_0_1 = 0; ax1_0_1 < 4; ++ax1_0_1) {
|
|
|
- for (int local_id = 0; local_id < 8; ++local_id) {
|
|
|
- int row_offset = (((int)blockIdx_y) / j_factors1) * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
|
|
|
- if (row_offset < M)
|
|
|
- {
|
|
|
- *(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
-
|
|
|
- __global__ void __launch_bounds__(64) dequantize_weights(
|
|
|
- int* __restrict__ B,
|
|
|
- half* __restrict__ scaling_factors,
|
|
|
- int* __restrict__ zeros,
|
|
|
- half* __restrict__ C,
|
|
|
- int G,
|
|
|
- int in_c,
|
|
|
- int out_c
|
|
|
- )
|
|
|
- {
|
|
|
- if (blockIdx.z > 0) {
|
|
|
- B = B + blockIdx.z * in_c * out_c / 8;
|
|
|
- scaling_factors = scaling_factors + blockIdx.z * in_c * out_c / G;
|
|
|
- zeros = zeros + blockIdx.z * in_c * out_c / G / 8;
|
|
|
- C = C + blockIdx.z * in_c * out_c;
|
|
|
- }
|
|
|
- int j_factors1 = 4;
|
|
|
- int row_stride2 = 4;
|
|
|
- int split_k_iters = 1;
|
|
|
- static constexpr uint32_t ZERO = 0x0;
|
|
|
- half B_shared[32 * (128 + 8)];
|
|
|
-
|
|
|
- half* B_shared_ptr2 = B_shared;
|
|
|
-
|
|
|
- half B_shared_warp[32];
|
|
|
- int OC = 512;
|
|
|
-
|
|
|
- int N = blockDim.x * gridDim.x; // 2
|
|
|
- int col = (blockIdx.x * blockDim.x + threadIdx.x);
|
|
|
- int row = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
- int index1 = 8 * col + 8 * row * N;
|
|
|
- half* C_ptr2 = C + index1;
|
|
|
-
|
|
|
- int index2 = col + row * N;
|
|
|
- int* B_ptr2 = B + index2;
|
|
|
-
|
|
|
- int index3 = col + (int)(row / G) * N;
|
|
|
- int* zeros_ptr2 = zeros + index3;
|
|
|
- int index4 = 8 * col + (int)(row / G) * N * 8;
|
|
|
- half* scaling_factors_ptr2 = scaling_factors + index4;
|
|
|
-
|
|
|
- uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr2);
|
|
|
- uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
|
|
|
- uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr2);
|
|
|
-
|
|
|
- uint32_t B_loaded = *(uint32_t*)B_ptr2;
|
|
|
- uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
|
|
|
-
|
|
|
- *(uint4*)B_shared_ptr2 = B_loaded_fp16;
|
|
|
-
|
|
|
- for (int i = 0; i < 8; ++i) {
|
|
|
- *(C_ptr2 + i) = B_shared[i];
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- template<int N>
|
|
|
- __global__ void __launch_bounds__(64) group_gemm_forward_4bit_cuda_m16nXk32(
|
|
|
- int G,
|
|
|
- int split_k_iters,
|
|
|
- half* __restrict__ A,
|
|
|
- int* __restrict__ B,
|
|
|
- half* __restrict__ scaling_factors,
|
|
|
- int* __restrict__ zeros,
|
|
|
- const float* __restrict__ topk_weights,
|
|
|
- const int* __restrict__ sorted_token_ids_ptr,
|
|
|
- const int* __restrict__ expert_ids_ptr,
|
|
|
- const int* __restrict__ num_tokens_post_padded,
|
|
|
- const int num_valid_tokens,
|
|
|
- const int top_k,
|
|
|
- const int expert_num,
|
|
|
- int pad_M,
|
|
|
- int M,
|
|
|
- int IC,
|
|
|
- int OC,
|
|
|
- half* __restrict__ C)
|
|
|
- {
|
|
|
- // Only support matrix n = 64 or 128
|
|
|
- assert(N == 64 || N == 128);
|
|
|
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
|
|
|
- assert(false);
|
|
|
- #else
|
|
|
- int num_tokens = *num_tokens_post_padded;
|
|
|
- int j_factors1 = ((OC + N - 1) / N);
|
|
|
- int blockIdx_x = 0;
|
|
|
- int blockIdx_y = blockIdx.x % ((pad_M + 16 - 1) / 16 * j_factors1);
|
|
|
- int blockIdx_z = blockIdx.x / ((pad_M + 16 - 1) / 16 * j_factors1);
|
|
|
- int block = blockIdx_y / j_factors1;
|
|
|
- if (block * 16 >= num_tokens) return;
|
|
|
-
|
|
|
- static constexpr uint32_t ZERO = 0x0;
|
|
|
- float C_warp[32];
|
|
|
- __shared__ half A_shared[16 * (32 + 8)];
|
|
|
- __shared__ half B_shared[32 * (N + 8)];
|
|
|
-
|
|
|
- __shared__ half scaling_factors_shared[N];
|
|
|
- __shared__ half zeros_shared[N];
|
|
|
-
|
|
|
- half A_shared_warp[8];
|
|
|
- half B_shared_warp[N / 4];
|
|
|
- for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
|
|
|
- for (int i = 0; i < 8; ++i) {
|
|
|
- C_warp[(j_0_4_init * 8) + i] = 0.0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- static constexpr int row_stride_warp = 32 * 8 / 32;
|
|
|
- static constexpr int row_stride = 2 * 32 * 8 / N;
|
|
|
- bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < N;
|
|
|
- // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
|
|
|
-
|
|
|
- int row = (block * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32);
|
|
|
- int token_id = sorted_token_ids_ptr[row];
|
|
|
- bool ld_A_flag = (token_id < num_valid_tokens);
|
|
|
- half* A_ptr = A + token_id / top_k * IC + (((int)threadIdx.x) % (32 / 8)) * 8;
|
|
|
-
|
|
|
- int expert_id = expert_ids_ptr[block];
|
|
|
- B = B + OC * IC / 8 * expert_id;
|
|
|
- scaling_factors = scaling_factors + OC * IC / G * expert_id;
|
|
|
- zeros = zeros + OC * IC / G / 8 * expert_id;
|
|
|
-
|
|
|
- int* B_ptr = B
|
|
|
- + ((int)threadIdx.y) * (OC / 8) * (256 / N)
|
|
|
- + (((int)threadIdx.x) / (N / 8)) * (OC / 8)
|
|
|
- + (((int)blockIdx_y) % j_factors1) * (N / 8)
|
|
|
- + (((int)threadIdx.x) % (N / 8)) * 1;
|
|
|
- // Why * 1 in the above line?
|
|
|
-
|
|
|
- half* A_shared_ptr = A_shared
|
|
|
- + ((int)threadIdx.y) * row_stride_warp * (32 + 8)
|
|
|
- + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
|
|
|
- + (((int)threadIdx.x) % (32 / 8) ) * 8;
|
|
|
-
|
|
|
- half* B_shared_ptr = B_shared
|
|
|
- + ((int)threadIdx.y) * (row_stride / 2) * (N + 8)
|
|
|
- + (((int)threadIdx.x) / (N / 8)) * (N + 8)
|
|
|
- + (((int)threadIdx.x) % (N / 8)) * 8;
|
|
|
-
|
|
|
- int* zeros_ptr = zeros
|
|
|
- + (((int)blockIdx_y) % j_factors1) * (N / 8)
|
|
|
- + ((int)threadIdx.x) % (N / 8);
|
|
|
-
|
|
|
- half* scaling_factors_ptr = scaling_factors
|
|
|
- + (((int)blockIdx_y) % j_factors1) * N
|
|
|
- + (((int)threadIdx.x) % (N / 8)) * 8;
|
|
|
-
|
|
|
- half* C_ptr = C
|
|
|
- + static_cast<long long>(blockIdx_z) * M * OC * expert_num // blockIdz.x -> split_k dim
|
|
|
- + (((int)blockIdx_y) % j_factors1) * N
|
|
|
- + ((int)threadIdx.y) * (N / 2)
|
|
|
- + (((int)threadIdx.x) % 4) * 2;
|
|
|
-
|
|
|
- // preload s.f. and zeros
|
|
|
- int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
|
|
|
- if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
|
|
|
- for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
|
|
|
- int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
|
|
|
- __syncthreads();
|
|
|
- // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
|
|
|
- if (ld_A_flag)
|
|
|
- {
|
|
|
- *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
|
|
|
- }
|
|
|
-
|
|
|
- uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
|
|
|
- uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
|
|
|
- uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
|
|
|
-
|
|
|
- int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
|
|
|
-
|
|
|
- for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {
|
|
|
-
|
|
|
- uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
|
|
|
- uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
|
|
|
-
|
|
|
- // TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
|
|
|
- asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
|
|
|
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
|
|
|
-
|
|
|
- // write back
|
|
|
- *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) = B_loaded_fp16;
|
|
|
- }
|
|
|
- __syncthreads();
|
|
|
-
|
|
|
- for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
|
|
|
- {
|
|
|
- unsigned int addr;
|
|
|
- __asm__ __volatile__(
|
|
|
- "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
|
|
|
- : "=r"(addr)
|
|
|
- : "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
|
|
|
- );
|
|
|
-
|
|
|
-
|
|
|
- __asm__ __volatile__(
|
|
|
- "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
|
|
|
- "{%0, %1, %2, %3}, [%4];\n"
|
|
|
- : "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
|
|
|
- : "r"(addr)
|
|
|
- );
|
|
|
- }
|
|
|
-
|
|
|
- for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
|
|
|
- {
|
|
|
- unsigned int addr;
|
|
|
- __asm__ __volatile__(
|
|
|
- "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
|
|
|
- : "=r"(addr)
|
|
|
- : "l"((void *)((&(B_shared[(((k_0_1 * (N * 16 + 128)) + (((int)threadIdx.y) * (N / 2))) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * (N + 8)) + ((((int)threadIdx.x) >> 4) * 8))))
|
|
|
- );
|
|
|
- __asm__ __volatile__(
|
|
|
- "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
|
|
|
- "{%0, %1, %2, %3}, [%4];\n"
|
|
|
- : "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
|
|
|
- : "r"(addr)
|
|
|
- );
|
|
|
- }
|
|
|
- }
|
|
|
- for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
|
|
|
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
- : "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
- : "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
- : "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
- : "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
|
|
|
- : "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- __asm__ __volatile__(
|
|
|
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
|
|
- "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
|
|
|
- : "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
- : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
- }
|
|
|
-
|
|
|
- #endif
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // TODO: Shang: Hoist loop invariance.
|
|
|
- for (int ax1_0_1 = 0; ax1_0_1 < N / 32; ++ax1_0_1) {
|
|
|
- for (int local_id = 0; local_id < 8; ++local_id) {
|
|
|
- int row_offset = block * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
|
|
|
- int token_id = sorted_token_ids_ptr[row_offset];
|
|
|
- if (token_id < num_valid_tokens)
|
|
|
- {
|
|
|
- float value = C_warp[(ax1_0_1 * 8) + local_id];
|
|
|
- if (topk_weights) {
|
|
|
- value = value * topk_weights[token_id];
|
|
|
- }
|
|
|
- *(C_ptr + ax1_0_1 * 16 + token_id * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(value);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
-
|
|
|
- } // namespace awq
|
|
|
- } // namespace aphrodite
|
|
|
-
|
|
|
- torch::Tensor awq_dequantize(
|
|
|
- torch::Tensor _kernel,
|
|
|
- torch::Tensor _scaling_factors,
|
|
|
- torch::Tensor _zeros,
|
|
|
- int split_k_iters,
|
|
|
- int thx,
|
|
|
- int thy)
|
|
|
- {
|
|
|
- int in_c = _kernel.dim() == 2 ? _kernel.size(0) : _kernel.size(1);
|
|
|
- int qout_c = _kernel.dim() == 2 ? _kernel.size(1) : _kernel.size(2);
|
|
|
- int num_experts = _kernel.dim() == 2 ? 1 : _kernel.size(0);
|
|
|
- int out_c = qout_c * 8;
|
|
|
- int G = in_c / (_kernel.dim() == 2 ? _scaling_factors.size(0) : _scaling_factors.size(1));
|
|
|
-
|
|
|
- int x_thread = thx;
|
|
|
- int y_thread = thy;
|
|
|
-
|
|
|
- int x_blocks = 1;
|
|
|
- int y_blocks = 1;
|
|
|
- if (thx==0) {
|
|
|
- x_thread = qout_c;
|
|
|
- }
|
|
|
- if (thy==0) {
|
|
|
- y_thread = in_c;
|
|
|
- }
|
|
|
- if (thx==0 && thy==0) {
|
|
|
- x_thread = 8;
|
|
|
- y_thread = 8;
|
|
|
- x_blocks = (int)(qout_c / 8);
|
|
|
- y_blocks = (int)(in_c / 8);
|
|
|
- }
|
|
|
-
|
|
|
- const at::cuda::OptionalCUDAGuard device_guard(device_of(_scaling_factors));
|
|
|
-
|
|
|
- auto options = torch::TensorOptions().dtype(_scaling_factors.dtype()).device(_scaling_factors.device());
|
|
|
- at::Tensor _de_kernel;
|
|
|
- if (num_experts == 1) {
|
|
|
- _de_kernel = torch::empty({in_c, out_c}, options);
|
|
|
- } else {
|
|
|
- _de_kernel = torch::empty({num_experts, in_c, out_c}, options);
|
|
|
- }
|
|
|
-
|
|
|
- auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
|
|
|
- auto de_kernel = reinterpret_cast<half*>(_de_kernel.data_ptr<at::Half>());
|
|
|
- auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
|
|
|
- auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
|
|
|
-
|
|
|
- dim3 num_blocks(x_blocks, y_blocks, num_experts);
|
|
|
- dim3 threads_per_block(x_thread, y_thread);
|
|
|
-
|
|
|
- const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
- aphrodite::awq::dequantize_weights<<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
- kernel, scaling_factors, zeros, de_kernel, G, in_c, out_c);
|
|
|
-
|
|
|
- return _de_kernel;
|
|
|
- }
|
|
|
-
|
|
|
- // in_feats: M, IC [float16]
|
|
|
- // kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
|
|
|
- // scaling_factors: IC // G, OC [float16]
|
|
|
- // zeros: IC // G, OC // 8 [int32] -> cast to IC // G, OC [uint4b]
|
|
|
- // assume that batch_size < 16 for now
|
|
|
-
|
|
|
- torch::Tensor awq_gemm(
|
|
|
- torch::Tensor _in_feats,
|
|
|
- torch::Tensor _kernel,
|
|
|
- torch::Tensor _scaling_factors,
|
|
|
- torch::Tensor _zeros,
|
|
|
- int split_k_iters)
|
|
|
- {
|
|
|
- int num_in_feats = _in_feats.size(0);
|
|
|
- int num_in_channels = _in_feats.size(1);
|
|
|
- const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));
|
|
|
-
|
|
|
- auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
|
|
|
- at::Tensor _out_feats = torch::empty({split_k_iters, num_in_feats, _kernel.size(1) * 8}, options);
|
|
|
- int num_out_feats = _out_feats.size(-2);
|
|
|
- int num_out_channels = _out_feats.size(-1);
|
|
|
-
|
|
|
- auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
|
|
|
- auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
|
|
|
- auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
|
|
|
- auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
|
|
|
- auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
|
|
|
- int group_size = num_in_channels / _scaling_factors.size(0);
|
|
|
-
|
|
|
- if (num_out_channels % 64 != 0)
|
|
|
- throw std::invalid_argument("OC is not multiple of cta_N = 64");
|
|
|
- if (num_out_channels % 8 != 0)
|
|
|
- throw std::invalid_argument("OC is not multiple of pack_num = 8");
|
|
|
- if (group_size % 32 != 0)
|
|
|
- throw std::invalid_argument("Group size should be a multiple of 32");
|
|
|
- if (num_out_channels % group_size != 0)
|
|
|
- throw std::invalid_argument("OC is not multiple of Group size");
|
|
|
-
|
|
|
- const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
- if (num_out_channels % 128 == 0)
|
|
|
- {
|
|
|
- int j_factors1 = num_out_channels / 128 / 1;
|
|
|
- dim3 num_blocks((num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
|
|
|
- // threadIdx.x: 32
|
|
|
- // threadIdx.y: i_factors[2] * j_factors[2]
|
|
|
- dim3 threads_per_block(32, 2);
|
|
|
- aphrodite::awq::gemm_forward_4bit_cuda_m16nXk32<128><<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
- group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels,
|
|
|
- num_out_channels, out_feats);
|
|
|
- }
|
|
|
- else if (num_out_channels % 64 == 0)
|
|
|
- {
|
|
|
- int j_factors1 = num_out_channels / 64 / 1;
|
|
|
- dim3 num_blocks(1 * (num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
|
|
|
-
|
|
|
- // threadIdx.x: 32
|
|
|
- // threadIdx.y: i_factors[2] * j_factors[2]
|
|
|
- dim3 threads_per_block(32, 2);
|
|
|
- aphrodite::awq::gemm_forward_4bit_cuda_m16nXk32<64><<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
- group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels,
|
|
|
- num_out_channels, out_feats);
|
|
|
- }
|
|
|
- return _out_feats.sum(0);
|
|
|
- }
|
|
|
-
|
|
|
- torch::Tensor awq_group_gemm(
|
|
|
- torch::Tensor _in_feats,
|
|
|
- torch::Tensor _kernel,
|
|
|
- torch::Tensor _scaling_factors,
|
|
|
- torch::Tensor _zeros,
|
|
|
- torch::Tensor _topk_weights,
|
|
|
- torch::Tensor _sorted_token_ids_ptr,
|
|
|
- torch::Tensor _expert_ids_ptr,
|
|
|
- torch::Tensor _num_tokens_post_padded,
|
|
|
- bool mul_weights,
|
|
|
- int split_k_iters)
|
|
|
- {
|
|
|
- int num_in_feats = _in_feats.size(0);
|
|
|
- int pad_num_in_feats = _sorted_token_ids_ptr.size(0);
|
|
|
- int num_in_channels = _in_feats.size(2);
|
|
|
- const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));
|
|
|
-
|
|
|
- auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
|
|
|
- int num_experts = _topk_weights.size(1);
|
|
|
- int top_k = num_experts / _in_feats.size(1);
|
|
|
- int group_size = num_in_channels / _scaling_factors.size(1);
|
|
|
-
|
|
|
- at::Tensor _out_feats = torch::empty({split_k_iters, num_in_feats, _topk_weights.size(1), _kernel.size(2) * 8}, options);
|
|
|
- int num_out_channels = _out_feats.size(-1);
|
|
|
-
|
|
|
- auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
|
|
|
- auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
|
|
|
- auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
|
|
|
- auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
|
|
|
- auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
|
|
|
- auto topk_weights = mul_weights ? reinterpret_cast<float*>(_topk_weights.data_ptr()) : nullptr;
|
|
|
- auto sorted_token_ids_ptr = reinterpret_cast<int*>(_sorted_token_ids_ptr.data_ptr());
|
|
|
- auto expert_ids_ptr = reinterpret_cast<int*>(_expert_ids_ptr.data_ptr());
|
|
|
- auto num_tokens_post_padded = reinterpret_cast<int*>(_num_tokens_post_padded.data_ptr());
|
|
|
-
|
|
|
- const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
- if (num_out_channels % 128 == 0)
|
|
|
- {
|
|
|
- int j_factors1 = num_out_channels / 128 / 1;
|
|
|
- dim3 num_blocks((pad_num_in_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
|
|
|
- // threadIdx.x: 32
|
|
|
- // threadIdx.y: i_factors[2] * j_factors[2]
|
|
|
- dim3 threads_per_block(32, 2);
|
|
|
- aphrodite::awq::group_gemm_forward_4bit_cuda_m16nXk32<128><<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
- group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
|
|
|
- topk_weights, sorted_token_ids_ptr, expert_ids_ptr, num_tokens_post_padded,
|
|
|
- _topk_weights.numel(), top_k, num_experts, pad_num_in_feats,
|
|
|
- num_in_feats, num_in_channels, num_out_channels, out_feats);
|
|
|
- }
|
|
|
- else if (num_out_channels % 64 == 0)
|
|
|
- {
|
|
|
- int j_factors1 = num_out_channels / 64 / 1;
|
|
|
- dim3 num_blocks((pad_num_in_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
|
|
|
-
|
|
|
- // threadIdx.x: 32
|
|
|
- // threadIdx.y: i_factors[2] * j_factors[2]
|
|
|
- dim3 threads_per_block(32, 2);
|
|
|
- aphrodite::awq::group_gemm_forward_4bit_cuda_m16nXk32<64><<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
- group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
|
|
|
- topk_weights, sorted_token_ids_ptr, expert_ids_ptr, num_tokens_post_padded,
|
|
|
- _topk_weights.numel(), top_k, num_experts, pad_num_in_feats,
|
|
|
- num_in_feats, num_in_channels, num_out_channels, out_feats);
|
|
|
- }
|
|
|
- return _out_feats.sum(0);
|
|
|
- }
|
|
|
+#include "dequantize.cuh"
|
|
|
+
|
|
|
+#include <cuda_fp16.h>
|
|
|
+
|
|
|
+namespace aphrodite {
|
|
|
+namespace awq {
|
|
|
+
|
|
|
+// Pack two half values.
|
|
|
+static inline __device__ __host__ unsigned __pack_half2(const half x,
|
|
|
+ const half y) {
|
|
|
+ unsigned v0 = *((unsigned short*)&x);
|
|
|
+ unsigned v1 = *((unsigned short*)&y);
|
|
|
+ return (v1 << 16) | v0;
|
|
|
+}
|
|
|
+
|
|
|
+template <int N>
|
|
|
+__global__ void __launch_bounds__(64)
|
|
|
+ gemm_forward_4bit_cuda_m16nXk32(int G, int split_k_iters,
|
|
|
+ half* __restrict__ A, int* __restrict__ B,
|
|
|
+ half* __restrict__ scaling_factors,
|
|
|
+ int* __restrict__ zeros, int M, int IC,
|
|
|
+ int OC, half* __restrict__ C) {
|
|
|
+ // Only support matrix n = 64 or 128
|
|
|
+ assert(N == 64 || N == 128);
|
|
|
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
|
|
|
+ assert(false);
|
|
|
+#else
|
|
|
+ static constexpr uint32_t ZERO = 0x0;
|
|
|
+ float C_warp[32];
|
|
|
+ __shared__ half A_shared[16 * (32 + 8)];
|
|
|
+ __shared__ half B_shared[32 * (N + 8)];
|
|
|
+
|
|
|
+ __shared__ half scaling_factors_shared[N];
|
|
|
+ __shared__ half zeros_shared[N];
|
|
|
+
|
|
|
+ int j_factors1 = ((OC + N - 1) / N);
|
|
|
+ int blockIdx_x = 0;
|
|
|
+ int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
|
|
|
+ int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);
|
|
|
+
|
|
|
+ half A_shared_warp[8];
|
|
|
+ half B_shared_warp[N / 4];
|
|
|
+ for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
|
|
|
+ for (int i = 0; i < 8; ++i) {
|
|
|
+ C_warp[(j_0_4_init * 8) + i] = 0.0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static constexpr int row_stride_warp = 32 * 8 / 32;
|
|
|
+ static constexpr int row_stride = 2 * 32 * 8 / N;
|
|
|
+ bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < N;
|
|
|
+ // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
|
|
|
+ bool ld_A_flag =
|
|
|
+ (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp +
|
|
|
+ threadIdx.x * 8 / 32) < M; // threadIdx.y is warp_id
|
|
|
+ // bool wb_C_flag = (threadIdx.x / 4) < M;
|
|
|
+
|
|
|
+ half* A_ptr =
|
|
|
+ A +
|
|
|
+ (((int)blockIdx_y) / j_factors1 * 16 +
|
|
|
+ (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) *
|
|
|
+ IC +
|
|
|
+ (((int)threadIdx.x) % (32 / 8)) * 8;
|
|
|
+
|
|
|
+ int* B_ptr = B + ((int)threadIdx.y) * (OC / 8) * (256 / N) +
|
|
|
+ (((int)threadIdx.x) / (N / 8)) * (OC / 8) +
|
|
|
+ (((int)blockIdx_y) % j_factors1) * (N / 8) +
|
|
|
+ (((int)threadIdx.x) % (N / 8)) * 1;
|
|
|
+ // Why * 1 in the above line?
|
|
|
+
|
|
|
+ half* A_shared_ptr = A_shared +
|
|
|
+ ((int)threadIdx.y) * row_stride_warp * (32 + 8) +
|
|
|
+ (((int)threadIdx.x) / (32 / 8)) * (32 + 8) +
|
|
|
+ (((int)threadIdx.x) % (32 / 8)) * 8;
|
|
|
+
|
|
|
+ half* B_shared_ptr = B_shared +
|
|
|
+ ((int)threadIdx.y) * (row_stride / 2) * (N + 8) +
|
|
|
+ (((int)threadIdx.x) / (N / 8)) * (N + 8) +
|
|
|
+ (((int)threadIdx.x) % (N / 8)) * 8;
|
|
|
+
|
|
|
+ int* zeros_ptr = zeros + (((int)blockIdx_y) % j_factors1) * (N / 8) +
|
|
|
+ ((int)threadIdx.x) % (N / 8);
|
|
|
+
|
|
|
+ half* scaling_factors_ptr = scaling_factors +
|
|
|
+ (((int)blockIdx_y) % j_factors1) * N +
|
|
|
+ (((int)threadIdx.x) % (N / 8)) * 8;
|
|
|
+
|
|
|
+ half* C_ptr =
|
|
|
+ C +
|
|
|
+ static_cast<long long>(blockIdx_z) * M * OC // blockIdz.x -> split_k dim
|
|
|
+ + (((int)blockIdx_y) % j_factors1) * N + ((int)threadIdx.y) * (N / 2) +
|
|
|
+ (((int)threadIdx.x) % 4) * 2;
|
|
|
+
|
|
|
+ // preload s.f. and zeros
|
|
|
+ int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
|
|
|
+ if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
|
|
|
+ for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
|
|
|
+ int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
|
|
|
+ __syncthreads();
|
|
|
+ // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
|
|
|
+ if (ld_A_flag) {
|
|
|
+ *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
|
|
|
+ } else {
|
|
|
+ *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ // for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
|
|
|
+ uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
|
|
|
+ uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
|
|
|
+ uint4 B_loaded_scale =
|
|
|
+ *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
|
|
|
+ /*
|
|
|
+ if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 &&
|
|
|
+ threadIdx.y == 0){ printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x,
|
|
|
+ B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x,
|
|
|
+ B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
|
|
|
+ }
|
|
|
+ */
|
|
|
+ // uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
|
|
|
+ int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
|
|
|
+
|
|
|
+ for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {
|
|
|
+ // B: 32 x 136 (128+8) float16
|
|
|
+ // each warp: 32 x 4
|
|
|
+ // each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus
|
|
|
+ // zero -> WB UINT4
|
|
|
+ // *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) *
|
|
|
+ // 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15)
|
|
|
+ // * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 *
|
|
|
+ // 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) *
|
|
|
+ // 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) *
|
|
|
+ // 8))); row stride in shared memory: (NWARPS * 32 * 8 / cta_N)
|
|
|
+ uint32_t B_loaded =
|
|
|
+ *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
|
|
|
+ uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
|
|
|
+ // uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N /
|
|
|
+ // 8)) * 8);
|
|
|
+
|
|
|
+ // uint4 B_loaded_scale = *(uint4*)(scaling_factors_shared + (threadIdx.x
|
|
|
+ // % (cta_N / 8)) * 8);
|
|
|
+ // - zero and * scale
|
|
|
+ // TODO (Haotian): can save 4 assembly instructions if sormulate as deq =
|
|
|
+ // q * scale - zero * scale.
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.x)
|
|
|
+ : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.x)
|
|
|
+ : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.y)
|
|
|
+ : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.y)
|
|
|
+ : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.z)
|
|
|
+ : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.z)
|
|
|
+ : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.w)
|
|
|
+ : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.w)
|
|
|
+ : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
|
|
|
+ /*
|
|
|
+ if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 ==
|
|
|
+ 0 && threadIdx.x == 17 && threadIdx.y == 0){ printf("[x] %X %X %X %X\n",
|
|
|
+ B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
|
|
|
+ }
|
|
|
+ */
|
|
|
+
|
|
|
+ // write back
|
|
|
+ *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) =
|
|
|
+ B_loaded_fp16;
|
|
|
+ }
|
|
|
+ __syncthreads();
|
|
|
+
|
|
|
+ for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
|
|
|
+ {
|
|
|
+ unsigned int addr;
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
|
|
|
+ "addr; }\n"
|
|
|
+ : "=r"(addr)
|
|
|
+ : "l"((void*)((&(A_shared[(k_0_1 * 16)])) +
|
|
|
+ (((((int)threadIdx.x) & 15) * 40) +
|
|
|
+ ((((int)threadIdx.x) >> 4) * 8)))));
|
|
|
+
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
|
|
|
+ "{%0, %1, %2, %3}, [%4];\n"
|
|
|
+ : "=r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "=r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "=r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "=r"(((unsigned*)(A_shared_warp + 0))[3])
|
|
|
+ : "r"(addr));
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
|
|
|
+ {
|
|
|
+ unsigned int addr;
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
|
|
|
+ "addr; }\n"
|
|
|
+ : "=r"(addr)
|
|
|
+ : "l"((void*)((&(B_shared[(((k_0_1 * (N * 16 + 128)) +
|
|
|
+ (((int)threadIdx.y) * (N / 2))) +
|
|
|
+ (ax1_0 * 16))])) +
|
|
|
+ (((((int)threadIdx.x) & 15) * (N + 8)) +
|
|
|
+ ((((int)threadIdx.x) >> 4) * 8)))));
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
|
|
|
+ "{%0, %1, %2, %3}, [%4];\n"
|
|
|
+ : "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[0]),
|
|
|
+ "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[1]),
|
|
|
+ "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[2]),
|
|
|
+ "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[3])
|
|
|
+ : "r"(addr));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
|
|
|
+ #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
+ : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
+ : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
+ : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[3]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
+ : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[3]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
|
|
|
+ "%13};\n"
|
|
|
+ : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[3]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
|
|
|
+ "%13};\n"
|
|
|
+ : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[3]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // TODO: Shang: Hoist loop invariance.
|
|
|
+ for (int ax1_0_1 = 0; ax1_0_1 < 4; ++ax1_0_1) {
|
|
|
+ for (int local_id = 0; local_id < 8; ++local_id) {
|
|
|
+ int row_offset = (((int)blockIdx_y) / j_factors1) * 16 +
|
|
|
+ ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
|
|
|
+ if (row_offset < M) {
|
|
|
+ *(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 +
|
|
|
+ local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+__global__ void __launch_bounds__(64)
|
|
|
+ dequantize_weights(int* __restrict__ B, half* __restrict__ scaling_factors,
|
|
|
+ int* __restrict__ zeros, half* __restrict__ C, int G,
|
|
|
+ int in_c, int out_c) {
|
|
|
+ if (blockIdx.z > 0) {
|
|
|
+ B = B + blockIdx.z * in_c * out_c / 8;
|
|
|
+ scaling_factors = scaling_factors + blockIdx.z * in_c * out_c / G;
|
|
|
+ zeros = zeros + blockIdx.z * in_c * out_c / G / 8;
|
|
|
+ C = C + blockIdx.z * in_c * out_c;
|
|
|
+ }
|
|
|
+ int j_factors1 = 4;
|
|
|
+ int row_stride2 = 4;
|
|
|
+ int split_k_iters = 1;
|
|
|
+ static constexpr uint32_t ZERO = 0x0;
|
|
|
+ half B_shared[32 * (128 + 8)];
|
|
|
+
|
|
|
+ half* B_shared_ptr2 = B_shared;
|
|
|
+
|
|
|
+ half B_shared_warp[32];
|
|
|
+ int OC = 512;
|
|
|
+
|
|
|
+ int N = blockDim.x * gridDim.x; // 2
|
|
|
+ int col = (blockIdx.x * blockDim.x + threadIdx.x);
|
|
|
+ int row = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
+ int index1 = 8 * col + 8 * row * N;
|
|
|
+ half* C_ptr2 = C + index1;
|
|
|
+
|
|
|
+ int index2 = col + row * N;
|
|
|
+ int* B_ptr2 = B + index2;
|
|
|
+
|
|
|
+ int index3 = col + (int)(row / G) * N;
|
|
|
+ int* zeros_ptr2 = zeros + index3;
|
|
|
+ int index4 = 8 * col + (int)(row / G) * N * 8;
|
|
|
+ half* scaling_factors_ptr2 = scaling_factors + index4;
|
|
|
+
|
|
|
+ uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr2);
|
|
|
+ uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
|
|
|
+ uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr2);
|
|
|
+
|
|
|
+ uint32_t B_loaded = *(uint32_t*)B_ptr2;
|
|
|
+ uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.x)
|
|
|
+ : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.x)
|
|
|
+ : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.y)
|
|
|
+ : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.y)
|
|
|
+ : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.z)
|
|
|
+ : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.z)
|
|
|
+ : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.w)
|
|
|
+ : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.w)
|
|
|
+ : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
|
|
|
+
|
|
|
+ *(uint4*)B_shared_ptr2 = B_loaded_fp16;
|
|
|
+
|
|
|
+ for (int i = 0; i < 8; ++i) {
|
|
|
+ *(C_ptr2 + i) = B_shared[i];
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template <int N>
|
|
|
+__global__ void __launch_bounds__(64) group_gemm_forward_4bit_cuda_m16nXk32(
|
|
|
+ int G, int split_k_iters, half* __restrict__ A, int* __restrict__ B,
|
|
|
+ half* __restrict__ scaling_factors, int* __restrict__ zeros,
|
|
|
+ const float* __restrict__ topk_weights,
|
|
|
+ const int* __restrict__ sorted_token_ids_ptr,
|
|
|
+ const int* __restrict__ expert_ids_ptr,
|
|
|
+ const int* __restrict__ num_tokens_post_padded, const int num_valid_tokens,
|
|
|
+ const int top_k, const int expert_num, int pad_M, int M, int IC, int OC,
|
|
|
+ half* __restrict__ C) {
|
|
|
+ // Only support matrix n = 64 or 128
|
|
|
+ assert(N == 64 || N == 128);
|
|
|
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
|
|
|
+ assert(false);
|
|
|
+#else
|
|
|
+ int num_tokens = *num_tokens_post_padded;
|
|
|
+ int j_factors1 = ((OC + N - 1) / N);
|
|
|
+ int blockIdx_x = 0;
|
|
|
+ int blockIdx_y = blockIdx.x % ((pad_M + 16 - 1) / 16 * j_factors1);
|
|
|
+ int blockIdx_z = blockIdx.x / ((pad_M + 16 - 1) / 16 * j_factors1);
|
|
|
+ int block = blockIdx_y / j_factors1;
|
|
|
+ if (block * 16 >= num_tokens) return;
|
|
|
+
|
|
|
+ static constexpr uint32_t ZERO = 0x0;
|
|
|
+ float C_warp[32];
|
|
|
+ __shared__ half A_shared[16 * (32 + 8)];
|
|
|
+ __shared__ half B_shared[32 * (N + 8)];
|
|
|
+
|
|
|
+ __shared__ half scaling_factors_shared[N];
|
|
|
+ __shared__ half zeros_shared[N];
|
|
|
+
|
|
|
+ half A_shared_warp[8];
|
|
|
+ half B_shared_warp[N / 4];
|
|
|
+ for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
|
|
|
+ for (int i = 0; i < 8; ++i) {
|
|
|
+ C_warp[(j_0_4_init * 8) + i] = 0.0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static constexpr int row_stride_warp = 32 * 8 / 32;
|
|
|
+ static constexpr int row_stride = 2 * 32 * 8 / N;
|
|
|
+ bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < N;
|
|
|
+ // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
|
|
|
+
|
|
|
+ int row = (block * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32);
|
|
|
+ int token_id = sorted_token_ids_ptr[row];
|
|
|
+ bool ld_A_flag = (token_id < num_valid_tokens);
|
|
|
+ half* A_ptr = A + token_id / top_k * IC + (((int)threadIdx.x) % (32 / 8)) * 8;
|
|
|
+
|
|
|
+ int expert_id = expert_ids_ptr[block];
|
|
|
+ B = B + OC * IC / 8 * expert_id;
|
|
|
+ scaling_factors = scaling_factors + OC * IC / G * expert_id;
|
|
|
+ zeros = zeros + OC * IC / G / 8 * expert_id;
|
|
|
+
|
|
|
+ int* B_ptr = B + ((int)threadIdx.y) * (OC / 8) * (256 / N) +
|
|
|
+ (((int)threadIdx.x) / (N / 8)) * (OC / 8) +
|
|
|
+ (((int)blockIdx_y) % j_factors1) * (N / 8) +
|
|
|
+ (((int)threadIdx.x) % (N / 8)) * 1;
|
|
|
+ // Why * 1 in the above line?
|
|
|
+
|
|
|
+ half* A_shared_ptr = A_shared +
|
|
|
+ ((int)threadIdx.y) * row_stride_warp * (32 + 8) +
|
|
|
+ (((int)threadIdx.x) / (32 / 8)) * (32 + 8) +
|
|
|
+ (((int)threadIdx.x) % (32 / 8)) * 8;
|
|
|
+
|
|
|
+ half* B_shared_ptr = B_shared +
|
|
|
+ ((int)threadIdx.y) * (row_stride / 2) * (N + 8) +
|
|
|
+ (((int)threadIdx.x) / (N / 8)) * (N + 8) +
|
|
|
+ (((int)threadIdx.x) % (N / 8)) * 8;
|
|
|
+
|
|
|
+ int* zeros_ptr = zeros + (((int)blockIdx_y) % j_factors1) * (N / 8) +
|
|
|
+ ((int)threadIdx.x) % (N / 8);
|
|
|
+
|
|
|
+ half* scaling_factors_ptr = scaling_factors +
|
|
|
+ (((int)blockIdx_y) % j_factors1) * N +
|
|
|
+ (((int)threadIdx.x) % (N / 8)) * 8;
|
|
|
+
|
|
|
+ half* C_ptr = C +
|
|
|
+ static_cast<long long>(blockIdx_z) * M * OC *
|
|
|
+ expert_num // blockIdz.x -> split_k dim
|
|
|
+ + (((int)blockIdx_y) % j_factors1) * N +
|
|
|
+ ((int)threadIdx.y) * (N / 2) + (((int)threadIdx.x) % 4) * 2;
|
|
|
+
|
|
|
+ // preload s.f. and zeros
|
|
|
+ int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
|
|
|
+ if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
|
|
|
+ for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
|
|
|
+ int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
|
|
|
+ __syncthreads();
|
|
|
+ // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
|
|
|
+ if (ld_A_flag) {
|
|
|
+ *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
|
|
|
+ } else {
|
|
|
+ *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
|
|
|
+ uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
|
|
|
+ uint4 B_loaded_scale =
|
|
|
+ *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
|
|
|
+
|
|
|
+ int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
|
|
|
+
|
|
|
+ for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {
|
|
|
+ uint32_t B_loaded =
|
|
|
+ *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
|
|
|
+ uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
|
|
|
+
|
|
|
+ // TODO (Haotian): can save 4 assembly instructions if sormulate as deq =
|
|
|
+ // q * scale - zero * scale.
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.x)
|
|
|
+ : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.x)
|
|
|
+ : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.y)
|
|
|
+ : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.y)
|
|
|
+ : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.z)
|
|
|
+ : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.z)
|
|
|
+ : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
|
|
|
+ asm volatile("sub.f16x2 %0, %1, %2;\n"
|
|
|
+ : "=r"(B_loaded_fp16.w)
|
|
|
+ : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
|
|
|
+ asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
|
|
|
+ : "=r"(B_loaded_fp16.w)
|
|
|
+ : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
|
|
|
+
|
|
|
+ // write back
|
|
|
+ *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) =
|
|
|
+ B_loaded_fp16;
|
|
|
+ }
|
|
|
+ __syncthreads();
|
|
|
+
|
|
|
+ for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
|
|
|
+ {
|
|
|
+ unsigned int addr;
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
|
|
|
+ "addr; }\n"
|
|
|
+ : "=r"(addr)
|
|
|
+ : "l"((void*)((&(A_shared[(k_0_1 * 16)])) +
|
|
|
+ (((((int)threadIdx.x) & 15) * 40) +
|
|
|
+ ((((int)threadIdx.x) >> 4) * 8)))));
|
|
|
+
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
|
|
|
+ "{%0, %1, %2, %3}, [%4];\n"
|
|
|
+ : "=r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "=r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "=r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "=r"(((unsigned*)(A_shared_warp + 0))[3])
|
|
|
+ : "r"(addr));
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
|
|
|
+ {
|
|
|
+ unsigned int addr;
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
|
|
|
+ "addr; }\n"
|
|
|
+ : "=r"(addr)
|
|
|
+ : "l"((void*)((&(B_shared[(((k_0_1 * (N * 16 + 128)) +
|
|
|
+ (((int)threadIdx.y) * (N / 2))) +
|
|
|
+ (ax1_0 * 16))])) +
|
|
|
+ (((((int)threadIdx.x) & 15) * (N + 8)) +
|
|
|
+ ((((int)threadIdx.x) >> 4) * 8)))));
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
|
|
|
+ "{%0, %1, %2, %3}, [%4];\n"
|
|
|
+ : "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[0]),
|
|
|
+ "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[1]),
|
|
|
+ "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[2]),
|
|
|
+ "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[3])
|
|
|
+ : "r"(addr));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
|
|
|
+ #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
+ : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
+ : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
+ : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[3]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
|
|
|
+ : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[3]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
|
|
|
+ "%13};\n"
|
|
|
+ : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[3]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
|
|
|
+ "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ __asm__ __volatile__(
|
|
|
+ "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
|
|
+ "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
|
|
|
+ "%13};\n"
|
|
|
+ : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
|
|
|
+ : "r"(((unsigned*)(A_shared_warp + 0))[0]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[1]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[2]),
|
|
|
+ "r"(((unsigned*)(A_shared_warp + 0))[3]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
|
|
|
+ "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
|
|
|
+ }
|
|
|
+
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // TODO: Shang: Hoist loop invariance.
|
|
|
+ for (int ax1_0_1 = 0; ax1_0_1 < N / 32; ++ax1_0_1) {
|
|
|
+ for (int local_id = 0; local_id < 8; ++local_id) {
|
|
|
+ int row_offset =
|
|
|
+ block * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
|
|
|
+ int token_id = sorted_token_ids_ptr[row_offset];
|
|
|
+ if (token_id < num_valid_tokens) {
|
|
|
+ float value = C_warp[(ax1_0_1 * 8) + local_id];
|
|
|
+ if (topk_weights) {
|
|
|
+ value = value * topk_weights[token_id];
|
|
|
+ }
|
|
|
+ *(C_ptr + ax1_0_1 * 16 + token_id * OC + (local_id / 4) * 8 +
|
|
|
+ local_id % 2) = __float2half(value);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+} // namespace awq
|
|
|
+} // namespace aphrodite
|
|
|
+
|
|
|
+torch::Tensor awq_dequantize(torch::Tensor _kernel,
|
|
|
+ torch::Tensor _scaling_factors,
|
|
|
+ torch::Tensor _zeros, int64_t split_k_iters,
|
|
|
+ int64_t thx, int64_t thy) {
|
|
|
+ int in_c = _kernel.dim() == 2 ? _kernel.size(0) : _kernel.size(1);
|
|
|
+ int qout_c = _kernel.dim() == 2 ? _kernel.size(1) : _kernel.size(2);
|
|
|
+ int num_experts = _kernel.dim() == 2 ? 1 : _kernel.size(0);
|
|
|
+ int out_c = qout_c * 8;
|
|
|
+ int G = in_c / (_kernel.dim() == 2 ? _scaling_factors.size(0)
|
|
|
+ : _scaling_factors.size(1));
|
|
|
+
|
|
|
+ int x_thread = thx;
|
|
|
+ int y_thread = thy;
|
|
|
+
|
|
|
+ int x_blocks = 1;
|
|
|
+ int y_blocks = 1;
|
|
|
+ if (thx == 0) {
|
|
|
+ x_thread = qout_c;
|
|
|
+ }
|
|
|
+ if (thy == 0) {
|
|
|
+ y_thread = in_c;
|
|
|
+ }
|
|
|
+ if (thx == 0 && thy == 0) {
|
|
|
+ x_thread = 8;
|
|
|
+ y_thread = 8;
|
|
|
+ x_blocks = (int)(qout_c / 8);
|
|
|
+ y_blocks = (int)(in_c / 8);
|
|
|
+ }
|
|
|
+
|
|
|
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(_scaling_factors));
|
|
|
+
|
|
|
+ auto options = torch::TensorOptions()
|
|
|
+ .dtype(_scaling_factors.dtype())
|
|
|
+ .device(_scaling_factors.device());
|
|
|
+ at::Tensor _de_kernel;
|
|
|
+ if (num_experts == 1) {
|
|
|
+ _de_kernel = torch::empty({in_c, out_c}, options);
|
|
|
+ } else {
|
|
|
+ _de_kernel = torch::empty({num_experts, in_c, out_c}, options);
|
|
|
+ }
|
|
|
+
|
|
|
+ auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
|
|
|
+ auto de_kernel = reinterpret_cast<half*>(_de_kernel.data_ptr<at::Half>());
|
|
|
+ auto scaling_factors =
|
|
|
+ reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
|
|
|
+ auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
|
|
|
+
|
|
|
+ dim3 num_blocks(x_blocks, y_blocks, num_experts);
|
|
|
+ dim3 threads_per_block(x_thread, y_thread);
|
|
|
+
|
|
|
+ const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
+ aphrodite::awq::
|
|
|
+ dequantize_weights<<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
+ kernel, scaling_factors, zeros, de_kernel, G, in_c, out_c);
|
|
|
+
|
|
|
+ return _de_kernel;
|
|
|
+}
|
|
|
+
|
|
|
+// in_feats: M, IC [float16]
|
|
|
+// kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
|
|
|
+// scaling_factors: IC // G, OC [float16]
|
|
|
+// zeros: IC // G, OC // 8 [int32] -> cast to IC // G, OC [uint4b]
|
|
|
+// assume that batch_size < 16 for now
|
|
|
+
|
|
|
+torch::Tensor awq_gemm(torch::Tensor _in_feats, torch::Tensor _kernel,
|
|
|
+ torch::Tensor _scaling_factors, torch::Tensor _zeros,
|
|
|
+ int64_t split_k_iters) {
|
|
|
+ int num_in_feats = _in_feats.size(0);
|
|
|
+ int num_in_channels = _in_feats.size(1);
|
|
|
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));
|
|
|
+
|
|
|
+ auto options = torch::TensorOptions()
|
|
|
+ .dtype(_in_feats.dtype())
|
|
|
+ .device(_in_feats.device());
|
|
|
+ at::Tensor _out_feats =
|
|
|
+ torch::empty({split_k_iters, num_in_feats, _kernel.size(1) * 8}, options);
|
|
|
+ int num_out_feats = _out_feats.size(-2);
|
|
|
+ int num_out_channels = _out_feats.size(-1);
|
|
|
+
|
|
|
+ auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
|
|
|
+ auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
|
|
|
+ auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
|
|
|
+ auto scaling_factors =
|
|
|
+ reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
|
|
|
+ auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
|
|
|
+ int group_size = num_in_channels / _scaling_factors.size(0);
|
|
|
+
|
|
|
+ if (num_out_channels % 64 != 0)
|
|
|
+ throw std::invalid_argument("OC is not multiple of cta_N = 64");
|
|
|
+ if (num_out_channels % 8 != 0)
|
|
|
+ throw std::invalid_argument("OC is not multiple of pack_num = 8");
|
|
|
+ if (group_size % 32 != 0)
|
|
|
+ throw std::invalid_argument("Group size should be a multiple of 32");
|
|
|
+ if (num_out_channels % group_size != 0)
|
|
|
+ throw std::invalid_argument("OC is not multiple of Group size");
|
|
|
+
|
|
|
+ const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
+ if (num_out_channels % 128 == 0) {
|
|
|
+ int j_factors1 = num_out_channels / 128 / 1;
|
|
|
+ dim3 num_blocks((num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
|
|
|
+ // threadIdx.x: 32
|
|
|
+ // threadIdx.y: i_factors[2] * j_factors[2]
|
|
|
+ dim3 threads_per_block(32, 2);
|
|
|
+ aphrodite::awq::gemm_forward_4bit_cuda_m16nXk32<128>
|
|
|
+ <<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
+ group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
|
|
|
+ num_in_feats, num_in_channels, num_out_channels, out_feats);
|
|
|
+ } else if (num_out_channels % 64 == 0) {
|
|
|
+ int j_factors1 = num_out_channels / 64 / 1;
|
|
|
+ dim3 num_blocks(1 * (num_out_feats + 16 - 1) / 16 * j_factors1 *
|
|
|
+ split_k_iters);
|
|
|
+
|
|
|
+ // threadIdx.x: 32
|
|
|
+ // threadIdx.y: i_factors[2] * j_factors[2]
|
|
|
+ dim3 threads_per_block(32, 2);
|
|
|
+ aphrodite::awq::gemm_forward_4bit_cuda_m16nXk32<64>
|
|
|
+ <<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
+ group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
|
|
|
+ num_in_feats, num_in_channels, num_out_channels, out_feats);
|
|
|
+ }
|
|
|
+ return _out_feats.sum(0);
|
|
|
+}
|
|
|
+
|
|
|
+torch::Tensor awq_group_gemm(torch::Tensor _in_feats, torch::Tensor _kernel,
|
|
|
+ torch::Tensor _scaling_factors,
|
|
|
+ torch::Tensor _zeros, torch::Tensor _topk_weights,
|
|
|
+ torch::Tensor _sorted_token_ids_ptr,
|
|
|
+ torch::Tensor _expert_ids_ptr,
|
|
|
+ torch::Tensor _num_tokens_post_padded,
|
|
|
+ bool mul_weights, int split_k_iters) {
|
|
|
+ int num_in_feats = _in_feats.size(0);
|
|
|
+ int pad_num_in_feats = _sorted_token_ids_ptr.size(0);
|
|
|
+ int num_in_channels = _in_feats.size(2);
|
|
|
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));
|
|
|
+
|
|
|
+ auto options = torch::TensorOptions()
|
|
|
+ .dtype(_in_feats.dtype())
|
|
|
+ .device(_in_feats.device());
|
|
|
+ int num_experts = _topk_weights.size(1);
|
|
|
+ int top_k = num_experts / _in_feats.size(1);
|
|
|
+ int group_size = num_in_channels / _scaling_factors.size(1);
|
|
|
+
|
|
|
+ at::Tensor _out_feats = torch::empty(
|
|
|
+ {split_k_iters, num_in_feats, _topk_weights.size(1), _kernel.size(2) * 8},
|
|
|
+ options);
|
|
|
+ int num_out_channels = _out_feats.size(-1);
|
|
|
+
|
|
|
+ auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
|
|
|
+ auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
|
|
|
+ auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
|
|
|
+ auto scaling_factors =
|
|
|
+ reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
|
|
|
+ auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
|
|
|
+ auto topk_weights = mul_weights
|
|
|
+ ? reinterpret_cast<float*>(_topk_weights.data_ptr())
|
|
|
+ : nullptr;
|
|
|
+ auto sorted_token_ids_ptr =
|
|
|
+ reinterpret_cast<int*>(_sorted_token_ids_ptr.data_ptr());
|
|
|
+ auto expert_ids_ptr = reinterpret_cast<int*>(_expert_ids_ptr.data_ptr());
|
|
|
+ auto num_tokens_post_padded =
|
|
|
+ reinterpret_cast<int*>(_num_tokens_post_padded.data_ptr());
|
|
|
+
|
|
|
+ const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
+ if (num_out_channels % 128 == 0) {
|
|
|
+ int j_factors1 = num_out_channels / 128 / 1;
|
|
|
+ dim3 num_blocks((pad_num_in_feats + 16 - 1) / 16 * j_factors1 *
|
|
|
+ split_k_iters);
|
|
|
+ // threadIdx.x: 32
|
|
|
+ // threadIdx.y: i_factors[2] * j_factors[2]
|
|
|
+ dim3 threads_per_block(32, 2);
|
|
|
+ aphrodite::awq::group_gemm_forward_4bit_cuda_m16nXk32<128>
|
|
|
+ <<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
+ group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
|
|
|
+ topk_weights, sorted_token_ids_ptr, expert_ids_ptr,
|
|
|
+ num_tokens_post_padded, _topk_weights.numel(), top_k, num_experts,
|
|
|
+ pad_num_in_feats, num_in_feats, num_in_channels, num_out_channels,
|
|
|
+ out_feats);
|
|
|
+ } else if (num_out_channels % 64 == 0) {
|
|
|
+ int j_factors1 = num_out_channels / 64 / 1;
|
|
|
+ dim3 num_blocks((pad_num_in_feats + 16 - 1) / 16 * j_factors1 *
|
|
|
+ split_k_iters);
|
|
|
+
|
|
|
+ // threadIdx.x: 32
|
|
|
+ // threadIdx.y: i_factors[2] * j_factors[2]
|
|
|
+ dim3 threads_per_block(32, 2);
|
|
|
+ aphrodite::awq::group_gemm_forward_4bit_cuda_m16nXk32<64>
|
|
|
+ <<<num_blocks, threads_per_block, 0, stream>>>(
|
|
|
+ group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
|
|
|
+ topk_weights, sorted_token_ids_ptr, expert_ids_ptr,
|
|
|
+ num_tokens_post_padded, _topk_weights.numel(), top_k, num_experts,
|
|
|
+ pad_num_in_feats, num_in_feats, num_in_channels, num_out_channels,
|
|
|
+ out_feats);
|
|
|
+ }
|
|
|
+ return _out_feats.sum(0);
|
|
|
+}
|