123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import numpy as np
- import torch
- import torch.nn.functional as F
- def log_sum_exp(x):
- """ numerically stable log_sum_exp implementation that prevents overflow """
- # TF ordering
- axis = len(x.size()) - 1
- m, _ = torch.max(x, dim=axis)
- m2, _ = torch.max(x, dim=axis, keepdim=True)
- return m + torch.log(torch.sum(torch.exp(x - m2), dim=axis))
- # It is adapted from https://github.com/r9y9/wavenet_vocoder/blob/master/wavenet_vocoder/mixture.py
- def discretized_mix_logistic_loss(y_hat, y, num_classes=65536,
- log_scale_min=None, reduce=True):
- if log_scale_min is None:
- log_scale_min = float(np.log(1e-14))
- y_hat = y_hat.permute(0,2,1)
- assert y_hat.dim() == 3
- assert y_hat.size(1) % 3 == 0
- nr_mix = y_hat.size(1) // 3
- # (B x T x C)
- y_hat = y_hat.transpose(1, 2)
- # unpack parameters. (B, T, num_mixtures) x 3
- logit_probs = y_hat[:, :, :nr_mix]
- means = y_hat[:, :, nr_mix:2 * nr_mix]
- log_scales = torch.clamp(y_hat[:, :, 2 * nr_mix:3 * nr_mix], min=log_scale_min)
- # B x T x 1 -> B x T x num_mixtures
- y = y.expand_as(means)
- centered_y = y - means
- inv_stdv = torch.exp(-log_scales)
- plus_in = inv_stdv * (centered_y + 1. / (num_classes - 1))
- cdf_plus = torch.sigmoid(plus_in)
- min_in = inv_stdv * (centered_y - 1. / (num_classes - 1))
- cdf_min = torch.sigmoid(min_in)
- # log probability for edge case of 0 (before scaling)
- # equivalent: torch.log(F.sigmoid(plus_in))
- log_cdf_plus = plus_in - F.softplus(plus_in)
- # log probability for edge case of 255 (before scaling)
- # equivalent: (1 - F.sigmoid(min_in)).log()
- log_one_minus_cdf_min = -F.softplus(min_in)
- # probability for all other cases
- cdf_delta = cdf_plus - cdf_min
- mid_in = inv_stdv * centered_y
- # log probability in the center of the bin, to be used in extreme cases
- # (not actually used in our code)
- log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in)
- # tf equivalent
- """
- log_probs = tf.where(x < -0.999, log_cdf_plus,
- tf.where(x > 0.999, log_one_minus_cdf_min,
- tf.where(cdf_delta > 1e-5,
- tf.log(tf.maximum(cdf_delta, 1e-12)),
- log_pdf_mid - np.log(127.5))))
- """
- # TODO: cdf_delta <= 1e-5 actually can happen. How can we choose the value
- # for num_classes=65536 case? 1e-7? not sure..
- inner_inner_cond = (cdf_delta > 1e-5).float()
- inner_inner_out = inner_inner_cond * \
- torch.log(torch.clamp(cdf_delta, min=1e-12)) + \
- (1. - inner_inner_cond) * (log_pdf_mid - np.log((num_classes - 1) / 2))
- inner_cond = (y > 0.999).float()
- inner_out = inner_cond * log_one_minus_cdf_min + (1. - inner_cond) * inner_inner_out
- cond = (y < -0.999).float()
- log_probs = cond * log_cdf_plus + (1. - cond) * inner_out
- log_probs = log_probs + F.log_softmax(logit_probs, -1)
- if reduce:
- return -torch.mean(log_sum_exp(log_probs))
- else:
- return -log_sum_exp(log_probs).unsqueeze(-1)
- def sample_from_discretized_mix_logistic(y, log_scale_min=None):
- """
- Sample from discretized mixture of logistic distributions
- Args:
- y (Tensor): B x C x T
- log_scale_min (float): Log scale minimum value
- Returns:
- Tensor: sample in range of [-1, 1].
- """
- if log_scale_min is None:
- log_scale_min = float(np.log(1e-14))
- assert y.size(1) % 3 == 0
- nr_mix = y.size(1) // 3
- # B x T x C
- y = y.transpose(1, 2)
- logit_probs = y[:, :, :nr_mix]
- # sample mixture indicator from softmax
- temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5)
- temp = logit_probs.data - torch.log(- torch.log(temp))
- _, argmax = temp.max(dim=-1)
- # (B, T) -> (B, T, nr_mix)
- one_hot = to_one_hot(argmax, nr_mix)
- # select logistic parameters
- means = torch.sum(y[:, :, nr_mix:2 * nr_mix] * one_hot, dim=-1)
- log_scales = torch.clamp(torch.sum(
- y[:, :, 2 * nr_mix:3 * nr_mix] * one_hot, dim=-1), min=log_scale_min)
- # sample from logistic & clip to interval
- # we don't actually round to the nearest 8bit value when sampling
- u = means.data.new(means.size()).uniform_(1e-5, 1.0 - 1e-5)
- x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1. - u))
- x = torch.clamp(torch.clamp(x, min=-1.), max=1.)
- return x
- def to_one_hot(tensor, n, fill_with=1.):
- # we perform one hot encore with respect to the last axis
- one_hot = torch.FloatTensor(tensor.size() + (n,)).zero_()
- if tensor.is_cuda:
- one_hot = one_hot.cuda()
- one_hot.scatter_(len(tensor.size()), tensor.unsqueeze(-1), fill_with)
- return one_hot
|