123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- import math
- import numpy as np
- import librosa
- import vocoder.hparams as hp
- from scipy.signal import lfilter
- import soundfile as sf
- def label_2_float(x, bits) :
- return 2 * x / (2**bits - 1.) - 1.
- def float_2_label(x, bits) :
- assert abs(x).max() <= 1.0
- x = (x + 1.) * (2**bits - 1) / 2
- return x.clip(0, 2**bits - 1)
- def load_wav(path) :
- return librosa.load(str(path), sr=hp.sample_rate)[0]
- def save_wav(x, path) :
- sf.write(path, x.astype(np.float32), hp.sample_rate)
- def split_signal(x) :
- unsigned = x + 2**15
- coarse = unsigned // 256
- fine = unsigned % 256
- return coarse, fine
- def combine_signal(coarse, fine) :
- return coarse * 256 + fine - 2**15
- def encode_16bits(x) :
- return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)
- mel_basis = None
- def linear_to_mel(spectrogram):
- global mel_basis
- if mel_basis is None:
- mel_basis = build_mel_basis()
- return np.dot(mel_basis, spectrogram)
- def build_mel_basis():
- return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels, fmin=hp.fmin)
- def normalize(S):
- return np.clip((S - hp.min_level_db) / -hp.min_level_db, 0, 1)
- def denormalize(S):
- return (np.clip(S, 0, 1) * -hp.min_level_db) + hp.min_level_db
- def amp_to_db(x):
- return 20 * np.log10(np.maximum(1e-5, x))
- def db_to_amp(x):
- return np.power(10.0, x * 0.05)
- def spectrogram(y):
- D = stft(y)
- S = amp_to_db(np.abs(D)) - hp.ref_level_db
- return normalize(S)
- def melspectrogram(y):
- D = stft(y)
- S = amp_to_db(linear_to_mel(np.abs(D)))
- return normalize(S)
- def stft(y):
- return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=hp.hop_length, win_length=hp.win_length)
- def pre_emphasis(x):
- return lfilter([1, -hp.preemphasis], [1], x)
- def de_emphasis(x):
- return lfilter([1], [1, -hp.preemphasis], x)
- def encode_mu_law(x, mu) :
- mu = mu - 1
- fx = np.sign(x) * np.log(1 + mu * np.abs(x)) / np.log(1 + mu)
- return np.floor((fx + 1) / 2 * mu + 0.5)
- def decode_mu_law(y, mu, from_labels=True) :
- if from_labels:
- y = label_2_float(y, math.log2(mu))
- mu = mu - 1
- x = np.sign(y) / mu * ((1 + mu) ** np.abs(y) - 1)
- return x
|