123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
- from time import perf_counter as timer
- from collections import OrderedDict
- import numpy as np
- class Profiler:
- def __init__(self, summarize_every=5, disabled=False):
- self.last_tick = timer()
- self.logs = OrderedDict()
- self.summarize_every = summarize_every
- self.disabled = disabled
-
- def tick(self, name):
- if self.disabled:
- return
-
- # Log the time needed to execute that function
- if not name in self.logs:
- self.logs[name] = []
- if len(self.logs[name]) >= self.summarize_every:
- self.summarize()
- self.purge_logs()
- self.logs[name].append(timer() - self.last_tick)
-
- self.reset_timer()
-
- def purge_logs(self):
- for name in self.logs:
- self.logs[name].clear()
-
- def reset_timer(self):
- self.last_tick = timer()
-
- def summarize(self):
- n = max(map(len, self.logs.values()))
- assert n == self.summarize_every
- print("\nAverage execution time over %d steps:" % n)
- name_msgs = ["%s (%d/%d):" % (name, len(deltas), n) for name, deltas in self.logs.items()]
- pad = max(map(len, name_msgs))
- for name_msg, deltas in zip(name_msgs, self.logs.values()):
- print(" %s mean: %4.0fms std: %4.0fms" %
- (name_msg.ljust(pad), np.mean(deltas) * 1000, np.std(deltas) * 1000))
- print("", flush=True)
-
|