123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- import sys
- import traceback
- from pathlib import Path
- from time import perf_counter as timer
- import numpy as np
- import torch
- from encoder import inference as encoder
- from synthesizer.inference import Synthesizer
- from toolbox.ui import UI
- from toolbox.utterance import Utterance
- from vocoder import inference as vocoder
- # Use this directory structure for your datasets, or modify it to fit your needs
- recognized_datasets = [
- "LibriSpeech/dev-clean",
- "LibriSpeech/dev-other",
- "LibriSpeech/test-clean",
- "LibriSpeech/test-other",
- "LibriSpeech/train-clean-100",
- "LibriSpeech/train-clean-360",
- "LibriSpeech/train-other-500",
- "LibriTTS/dev-clean",
- "LibriTTS/dev-other",
- "LibriTTS/test-clean",
- "LibriTTS/test-other",
- "LibriTTS/train-clean-100",
- "LibriTTS/train-clean-360",
- "LibriTTS/train-other-500",
- "LJSpeech-1.1",
- "VoxCeleb1/wav",
- "VoxCeleb1/test_wav",
- "VoxCeleb2/dev/aac",
- "VoxCeleb2/test/aac",
- "VCTK-Corpus/wav48",
- ]
- # Maximum of generated wavs to keep on memory
- MAX_WAVS = 15
- class Toolbox:
- def __init__(self, datasets_root: Path, models_dir: Path, seed: int=None):
- sys.excepthook = self.excepthook
- self.datasets_root = datasets_root
- self.utterances = set()
- self.current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav
- self.synthesizer = None # type: Synthesizer
- self.current_wav = None
- self.waves_list = []
- self.waves_count = 0
- self.waves_namelist = []
- # Check for webrtcvad (enables removal of silences in vocoder output)
- try:
- import webrtcvad
- self.trim_silences = True
- except:
- self.trim_silences = False
- # Initialize the events and the interface
- self.ui = UI()
- self.reset_ui(models_dir, seed)
- self.setup_events()
- self.ui.start()
- def excepthook(self, exc_type, exc_value, exc_tb):
- traceback.print_exception(exc_type, exc_value, exc_tb)
- self.ui.log("Exception: %s" % exc_value)
- def setup_events(self):
- # Dataset, speaker and utterance selection
- self.ui.browser_load_button.clicked.connect(lambda: self.load_from_browser())
- random_func = lambda level: lambda: self.ui.populate_browser(self.datasets_root,
- recognized_datasets,
- level)
- self.ui.random_dataset_button.clicked.connect(random_func(0))
- self.ui.random_speaker_button.clicked.connect(random_func(1))
- self.ui.random_utterance_button.clicked.connect(random_func(2))
- self.ui.dataset_box.currentIndexChanged.connect(random_func(1))
- self.ui.speaker_box.currentIndexChanged.connect(random_func(2))
- # Model selection
- self.ui.encoder_box.currentIndexChanged.connect(self.init_encoder)
- def func():
- self.synthesizer = None
- self.ui.synthesizer_box.currentIndexChanged.connect(func)
- self.ui.vocoder_box.currentIndexChanged.connect(self.init_vocoder)
- # Utterance selection
- func = lambda: self.load_from_browser(self.ui.browse_file())
- self.ui.browser_browse_button.clicked.connect(func)
- func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current")
- self.ui.utterance_history.currentIndexChanged.connect(func)
- func = lambda: self.ui.play(self.ui.selected_utterance.wav, Synthesizer.sample_rate)
- self.ui.play_button.clicked.connect(func)
- self.ui.stop_button.clicked.connect(self.ui.stop)
- self.ui.record_button.clicked.connect(self.record)
- #Audio
- self.ui.setup_audio_devices(Synthesizer.sample_rate)
- #Wav playback & save
- func = lambda: self.replay_last_wav()
- self.ui.replay_wav_button.clicked.connect(func)
- func = lambda: self.export_current_wave()
- self.ui.export_wav_button.clicked.connect(func)
- self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav)
- # Generation
- func = lambda: self.synthesize() or self.vocode()
- self.ui.generate_button.clicked.connect(func)
- self.ui.synthesize_button.clicked.connect(self.synthesize)
- self.ui.vocode_button.clicked.connect(self.vocode)
- self.ui.random_seed_checkbox.clicked.connect(self.update_seed_textbox)
- # UMAP legend
- self.ui.clear_button.clicked.connect(self.clear_utterances)
- def set_current_wav(self, index):
- self.current_wav = self.waves_list[index]
- def export_current_wave(self):
- self.ui.save_audio_file(self.current_wav, Synthesizer.sample_rate)
- def replay_last_wav(self):
- self.ui.play(self.current_wav, Synthesizer.sample_rate)
- def reset_ui(self, models_dir: Path, seed: int=None):
- self.ui.populate_browser(self.datasets_root, recognized_datasets, 0, True)
- self.ui.populate_models(models_dir)
- self.ui.populate_gen_options(seed, self.trim_silences)
- def load_from_browser(self, fpath=None):
- if fpath is None:
- fpath = Path(self.datasets_root,
- self.ui.current_dataset_name,
- self.ui.current_speaker_name,
- self.ui.current_utterance_name)
- name = str(fpath.relative_to(self.datasets_root))
- speaker_name = self.ui.current_dataset_name + '_' + self.ui.current_speaker_name
- # Select the next utterance
- if self.ui.auto_next_checkbox.isChecked():
- self.ui.browser_select_next()
- elif fpath == "":
- return
- else:
- name = fpath.name
- speaker_name = fpath.parent.name
- # Get the wav from the disk. We take the wav with the vocoder/synthesizer format for
- # playback, so as to have a fair comparison with the generated audio
- wav = Synthesizer.load_preprocess_wav(fpath)
- self.ui.log("Loaded %s" % name)
- self.add_real_utterance(wav, name, speaker_name)
- def record(self):
- wav = self.ui.record_one(encoder.sampling_rate, 5)
- if wav is None:
- return
- self.ui.play(wav, encoder.sampling_rate)
- speaker_name = "user01"
- name = speaker_name + "_rec_%05d" % np.random.randint(100000)
- self.add_real_utterance(wav, name, speaker_name)
- def add_real_utterance(self, wav, name, speaker_name):
- # Compute the mel spectrogram
- spec = Synthesizer.make_spectrogram(wav)
- self.ui.draw_spec(spec, "current")
- # Compute the embedding
- if not encoder.is_loaded():
- self.init_encoder()
- encoder_wav = encoder.preprocess_wav(wav)
- embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True)
- # Add the utterance
- utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, False)
- self.utterances.add(utterance)
- self.ui.register_utterance(utterance)
- # Plot it
- self.ui.draw_embed(embed, name, "current")
- self.ui.draw_umap_projections(self.utterances)
- def clear_utterances(self):
- self.utterances.clear()
- self.ui.draw_umap_projections(self.utterances)
- def synthesize(self):
- self.ui.log("Generating the mel spectrogram...")
- self.ui.set_loading(1)
- # Update the synthesizer random seed
- if self.ui.random_seed_checkbox.isChecked():
- seed = int(self.ui.seed_textbox.text())
- self.ui.populate_gen_options(seed, self.trim_silences)
- else:
- seed = None
- if seed is not None:
- torch.manual_seed(seed)
- # Synthesize the spectrogram
- if self.synthesizer is None or seed is not None:
- self.init_synthesizer()
- texts = self.ui.text_prompt.toPlainText().split("\n")
- embed = self.ui.selected_utterance.embed
- embeds = [embed] * len(texts)
- specs = self.synthesizer.synthesize_spectrograms(texts, embeds)
- breaks = [spec.shape[1] for spec in specs]
- spec = np.concatenate(specs, axis=1)
- self.ui.draw_spec(spec, "generated")
- self.current_generated = (self.ui.selected_utterance.speaker_name, spec, breaks, None)
- self.ui.set_loading(0)
- def vocode(self):
- speaker_name, spec, breaks, _ = self.current_generated
- assert spec is not None
- # Initialize the vocoder model and make it determinstic, if user provides a seed
- if self.ui.random_seed_checkbox.isChecked():
- seed = int(self.ui.seed_textbox.text())
- self.ui.populate_gen_options(seed, self.trim_silences)
- else:
- seed = None
- if seed is not None:
- torch.manual_seed(seed)
- # Synthesize the waveform
- if not vocoder.is_loaded() or seed is not None:
- self.init_vocoder()
- def vocoder_progress(i, seq_len, b_size, gen_rate):
- real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000
- line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \
- % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor)
- self.ui.log(line, "overwrite")
- self.ui.set_loading(i, seq_len)
- if self.ui.current_vocoder_fpath is not None:
- self.ui.log("")
- wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress)
- else:
- self.ui.log("Waveform generation with Griffin-Lim... ")
- wav = Synthesizer.griffin_lim(spec)
- self.ui.set_loading(0)
- self.ui.log(" Done!", "append")
- # Add breaks
- b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size)
- b_starts = np.concatenate(([0], b_ends[:-1]))
- wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)]
- breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks)
- wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])
- # Trim excessive silences
- if self.ui.trim_silences_checkbox.isChecked():
- wav = encoder.preprocess_wav(wav)
- # Play it
- wav = wav / np.abs(wav).max() * 0.97
- self.ui.play(wav, Synthesizer.sample_rate)
- # Name it (history displayed in combobox)
- # TODO better naming for the combobox items?
- wav_name = str(self.waves_count + 1)
- #Update waves combobox
- self.waves_count += 1
- if self.waves_count > MAX_WAVS:
- self.waves_list.pop()
- self.waves_namelist.pop()
- self.waves_list.insert(0, wav)
- self.waves_namelist.insert(0, wav_name)
- self.ui.waves_cb.disconnect()
- self.ui.waves_cb_model.setStringList(self.waves_namelist)
- self.ui.waves_cb.setCurrentIndex(0)
- self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav)
- # Update current wav
- self.set_current_wav(0)
- #Enable replay and save buttons:
- self.ui.replay_wav_button.setDisabled(False)
- self.ui.export_wav_button.setDisabled(False)
- # Compute the embedding
- # TODO: this is problematic with different sampling rates, gotta fix it
- if not encoder.is_loaded():
- self.init_encoder()
- encoder_wav = encoder.preprocess_wav(wav)
- embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True)
- # Add the utterance
- name = speaker_name + "_gen_%05d" % np.random.randint(100000)
- utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, True)
- self.utterances.add(utterance)
- # Plot it
- self.ui.draw_embed(embed, name, "generated")
- self.ui.draw_umap_projections(self.utterances)
- def init_encoder(self):
- model_fpath = self.ui.current_encoder_fpath
- self.ui.log("Loading the encoder %s... " % model_fpath)
- self.ui.set_loading(1)
- start = timer()
- encoder.load_model(model_fpath)
- self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
- self.ui.set_loading(0)
- def init_synthesizer(self):
- model_fpath = self.ui.current_synthesizer_fpath
- self.ui.log("Loading the synthesizer %s... " % model_fpath)
- self.ui.set_loading(1)
- start = timer()
- self.synthesizer = Synthesizer(model_fpath)
- self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
- self.ui.set_loading(0)
- def init_vocoder(self):
- model_fpath = self.ui.current_vocoder_fpath
- # Case of Griffin-lim
- if model_fpath is None:
- return
- self.ui.log("Loading the vocoder %s... " % model_fpath)
- self.ui.set_loading(1)
- start = timer()
- vocoder.load_model(model_fpath)
- self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
- self.ui.set_loading(0)
- def update_seed_textbox(self):
- self.ui.update_seed_textbox()
|