12345678910111213141516171819202122232425 |
- from synthesizer.preprocess import create_embeddings
- from utils.argutils import print_args
- from pathlib import Path
- import argparse
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(
- description="Creates embeddings for the synthesizer from the LibriSpeech utterances.",
- formatter_class=argparse.ArgumentDefaultsHelpFormatter
- )
- parser.add_argument("synthesizer_root", type=Path, help=\
- "Path to the synthesizer training data that contains the audios and the train.txt file. "
- "If you let everything as default, it should be <datasets_root>/SV2TTS/synthesizer/.")
- parser.add_argument("-e", "--encoder_model_fpath", type=Path,
- default="saved_models/default/encoder.pt", help=\
- "Path your trained encoder model.")
- parser.add_argument("-n", "--n_processes", type=int, default=4, help= \
- "Number of parallel processes. An encoder is created for each, so you may need to lower "
- "this value on GPUs with low memory. Set it to 1 if CUDA is unhappy.")
- args = parser.parse_args()
- # Preprocess the dataset
- print_args(args, parser)
- create_embeddings(**vars(args))
|