1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- import torch
- from torch.utils.data import Dataset
- import numpy as np
- from pathlib import Path
- from synthesizer.utils.text import text_to_sequence
- class SynthesizerDataset(Dataset):
- def __init__(self, metadata_fpath: Path, mel_dir: Path, embed_dir: Path, hparams):
- print("Using inputs from:\n\t%s\n\t%s\n\t%s" % (metadata_fpath, mel_dir, embed_dir))
-
- with metadata_fpath.open("r") as metadata_file:
- metadata = [line.split("|") for line in metadata_file]
-
- mel_fnames = [x[1] for x in metadata if int(x[4])]
- mel_fpaths = [mel_dir.joinpath(fname) for fname in mel_fnames]
- embed_fnames = [x[2] for x in metadata if int(x[4])]
- embed_fpaths = [embed_dir.joinpath(fname) for fname in embed_fnames]
- self.samples_fpaths = list(zip(mel_fpaths, embed_fpaths))
- self.samples_texts = [x[5].strip() for x in metadata if int(x[4])]
- self.metadata = metadata
- self.hparams = hparams
-
- print("Found %d samples" % len(self.samples_fpaths))
-
- def __getitem__(self, index):
- # Sometimes index may be a list of 2 (not sure why this happens)
- # If that is the case, return a single item corresponding to first element in index
- if index is list:
- index = index[0]
- mel_path, embed_path = self.samples_fpaths[index]
- mel = np.load(mel_path).T.astype(np.float32)
-
- # Load the embed
- embed = np.load(embed_path)
- # Get the text and clean it
- text = text_to_sequence(self.samples_texts[index], self.hparams.tts_cleaner_names)
-
- # Convert the list returned by text_to_sequence to a numpy array
- text = np.asarray(text).astype(np.int32)
- return text, mel.astype(np.float32), embed.astype(np.float32), index
- def __len__(self):
- return len(self.samples_fpaths)
- def collate_synthesizer(batch, r, hparams):
- # Text
- x_lens = [len(x[0]) for x in batch]
- max_x_len = max(x_lens)
- chars = [pad1d(x[0], max_x_len) for x in batch]
- chars = np.stack(chars)
- # Mel spectrogram
- spec_lens = [x[1].shape[-1] for x in batch]
- max_spec_len = max(spec_lens) + 1
- if max_spec_len % r != 0:
- max_spec_len += r - max_spec_len % r
- # WaveRNN mel spectrograms are normalized to [0, 1] so zero padding adds silence
- # By default, SV2TTS uses symmetric mels, where -1*max_abs_value is silence.
- if hparams.symmetric_mels:
- mel_pad_value = -1 * hparams.max_abs_value
- else:
- mel_pad_value = 0
- mel = [pad2d(x[1], max_spec_len, pad_value=mel_pad_value) for x in batch]
- mel = np.stack(mel)
- # Speaker embedding (SV2TTS)
- embeds = np.array([x[2] for x in batch])
- # Index (for vocoder preprocessing)
- indices = [x[3] for x in batch]
- # Convert all to tensor
- chars = torch.tensor(chars).long()
- mel = torch.tensor(mel)
- embeds = torch.tensor(embeds)
- return chars, mel, embeds, indices
- def pad1d(x, max_len, pad_value=0):
- return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value)
- def pad2d(x, max_len, pad_value=0):
- return np.pad(x, ((0, 0), (0, max_len - x.shape[-1])), mode="constant", constant_values=pad_value)
|