123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- import librosa
- import librosa.filters
- import numpy as np
- from scipy import signal
- from scipy.io import wavfile
- import soundfile as sf
- def load_wav(path, sr):
- return librosa.core.load(path, sr=sr)[0]
- def save_wav(wav, path, sr):
- wav *= 32767 / max(0.01, np.max(np.abs(wav)))
- #proposed by @dsmiller
- wavfile.write(path, sr, wav.astype(np.int16))
- def save_wavenet_wav(wav, path, sr):
- sf.write(path, wav.astype(np.float32), sr)
- def preemphasis(wav, k, preemphasize=True):
- if preemphasize:
- return signal.lfilter([1, -k], [1], wav)
- return wav
- def inv_preemphasis(wav, k, inv_preemphasize=True):
- if inv_preemphasize:
- return signal.lfilter([1], [1, -k], wav)
- return wav
- #From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py
- def start_and_end_indices(quantized, silence_threshold=2):
- for start in range(quantized.size):
- if abs(quantized[start] - 127) > silence_threshold:
- break
- for end in range(quantized.size - 1, 1, -1):
- if abs(quantized[end] - 127) > silence_threshold:
- break
-
- assert abs(quantized[start] - 127) > silence_threshold
- assert abs(quantized[end] - 127) > silence_threshold
-
- return start, end
- def get_hop_size(hparams):
- hop_size = hparams.hop_size
- if hop_size is None:
- assert hparams.frame_shift_ms is not None
- hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
- return hop_size
- def linearspectrogram(wav, hparams):
- D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
- S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db
-
- if hparams.signal_normalization:
- return _normalize(S, hparams)
- return S
- def melspectrogram(wav, hparams):
- D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
- S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db
-
- if hparams.signal_normalization:
- return _normalize(S, hparams)
- return S
- def inv_linear_spectrogram(linear_spectrogram, hparams):
- """Converts linear spectrogram to waveform using librosa"""
- if hparams.signal_normalization:
- D = _denormalize(linear_spectrogram, hparams)
- else:
- D = linear_spectrogram
-
- S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear
-
- if hparams.use_lws:
- processor = _lws_processor(hparams)
- D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
- y = processor.istft(D).astype(np.float32)
- return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
- else:
- return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
- def inv_mel_spectrogram(mel_spectrogram, hparams):
- """Converts mel spectrogram to waveform using librosa"""
- if hparams.signal_normalization:
- D = _denormalize(mel_spectrogram, hparams)
- else:
- D = mel_spectrogram
-
- S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear
-
- if hparams.use_lws:
- processor = _lws_processor(hparams)
- D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
- y = processor.istft(D).astype(np.float32)
- return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
- else:
- return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
- def _lws_processor(hparams):
- import lws
- return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech")
- def _griffin_lim(S, hparams):
- """librosa implementation of Griffin-Lim
- Based on https://github.com/librosa/librosa/issues/434
- """
- angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
- S_complex = np.abs(S).astype(np.complex)
- y = _istft(S_complex * angles, hparams)
- for i in range(hparams.griffin_lim_iters):
- angles = np.exp(1j * np.angle(_stft(y, hparams)))
- y = _istft(S_complex * angles, hparams)
- return y
- def _stft(y, hparams):
- if hparams.use_lws:
- return _lws_processor(hparams).stft(y).T
- else:
- return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size)
- def _istft(y, hparams):
- return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size)
- ##########################################################
- #Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
- def num_frames(length, fsize, fshift):
- """Compute number of time frames of spectrogram
- """
- pad = (fsize - fshift)
- if length % fshift == 0:
- M = (length + pad * 2 - fsize) // fshift + 1
- else:
- M = (length + pad * 2 - fsize) // fshift + 2
- return M
- def pad_lr(x, fsize, fshift):
- """Compute left and right padding
- """
- M = num_frames(len(x), fsize, fshift)
- pad = (fsize - fshift)
- T = len(x) + 2 * pad
- r = (M - 1) * fshift + fsize - T
- return pad, pad + r
- ##########################################################
- #Librosa correct padding
- def librosa_pad_lr(x, fsize, fshift):
- return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
- # Conversions
- _mel_basis = None
- _inv_mel_basis = None
- def _linear_to_mel(spectogram, hparams):
- global _mel_basis
- if _mel_basis is None:
- _mel_basis = _build_mel_basis(hparams)
- return np.dot(_mel_basis, spectogram)
- def _mel_to_linear(mel_spectrogram, hparams):
- global _inv_mel_basis
- if _inv_mel_basis is None:
- _inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams))
- return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram))
- def _build_mel_basis(hparams):
- assert hparams.fmax <= hparams.sample_rate // 2
- return librosa.filters.mel(hparams.sample_rate, hparams.n_fft, n_mels=hparams.num_mels,
- fmin=hparams.fmin, fmax=hparams.fmax)
- def _amp_to_db(x, hparams):
- min_level = np.exp(hparams.min_level_db / 20 * np.log(10))
- return 20 * np.log10(np.maximum(min_level, x))
- def _db_to_amp(x):
- return np.power(10.0, (x) * 0.05)
- def _normalize(S, hparams):
- if hparams.allow_clipping_in_normalization:
- if hparams.symmetric_mels:
- return np.clip((2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value,
- -hparams.max_abs_value, hparams.max_abs_value)
- else:
- return np.clip(hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)), 0, hparams.max_abs_value)
-
- assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0
- if hparams.symmetric_mels:
- return (2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value
- else:
- return hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db))
- def _denormalize(D, hparams):
- if hparams.allow_clipping_in_normalization:
- if hparams.symmetric_mels:
- return (((np.clip(D, -hparams.max_abs_value,
- hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value))
- + hparams.min_level_db)
- else:
- return ((np.clip(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
-
- if hparams.symmetric_mels:
- return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db)
- else:
- return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
|