1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- from synthesizer.preprocess import preprocess_dataset
- from synthesizer.hparams import hparams
- from utils.argutils import print_args
- from pathlib import Path
- import argparse
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(
- description="Preprocesses audio files from datasets, encodes them as mel spectrograms "
- "and writes them to the disk. Audio files are also saved, to be used by the "
- "vocoder for training.",
- formatter_class=argparse.ArgumentDefaultsHelpFormatter
- )
- parser.add_argument("datasets_root", type=Path, help=\
- "Path to the directory containing your LibriSpeech/TTS datasets.")
- parser.add_argument("-o", "--out_dir", type=Path, default=argparse.SUPPRESS, help=\
- "Path to the output directory that will contain the mel spectrograms, the audios and the "
- "embeds. Defaults to <datasets_root>/SV2TTS/synthesizer/")
- parser.add_argument("-n", "--n_processes", type=int, default=4, help=\
- "Number of processes in parallel.")
- parser.add_argument("-s", "--skip_existing", action="store_true", help=\
- "Whether to overwrite existing files with the same name. Useful if the preprocessing was "
- "interrupted.")
- parser.add_argument("--hparams", type=str, default="", help=\
- "Hyperparameter overrides as a comma-separated list of name-value pairs")
- parser.add_argument("--no_alignments", action="store_true", help=\
- "Use this option when dataset does not include alignments\
- (these are used to split long audio files into sub-utterances.)")
- parser.add_argument("--datasets_name", type=str, default="LibriSpeech", help=\
- "Name of the dataset directory to process.")
- parser.add_argument("--subfolders", type=str, default="train-clean-100,train-clean-360", help=\
- "Comma-separated list of subfolders to process inside your dataset directory")
- args = parser.parse_args()
- # Process the arguments
- if not hasattr(args, "out_dir"):
- args.out_dir = args.datasets_root.joinpath("SV2TTS", "synthesizer")
- # Create directories
- assert args.datasets_root.exists()
- args.out_dir.mkdir(exist_ok=True, parents=True)
- # Preprocess the dataset
- print_args(args, parser)
- args.hparams = hparams.parse(args.hparams)
- preprocess_dataset(**vars(args))
|