123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519 |
- import os
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from pathlib import Path
- from typing import Union
- class HighwayNetwork(nn.Module):
- def __init__(self, size):
- super().__init__()
- self.W1 = nn.Linear(size, size)
- self.W2 = nn.Linear(size, size)
- self.W1.bias.data.fill_(0.)
- def forward(self, x):
- x1 = self.W1(x)
- x2 = self.W2(x)
- g = torch.sigmoid(x2)
- y = g * F.relu(x1) + (1. - g) * x
- return y
- class Encoder(nn.Module):
- def __init__(self, embed_dims, num_chars, encoder_dims, K, num_highways, dropout):
- super().__init__()
- prenet_dims = (encoder_dims, encoder_dims)
- cbhg_channels = encoder_dims
- self.embedding = nn.Embedding(num_chars, embed_dims)
- self.pre_net = PreNet(embed_dims, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1],
- dropout=dropout)
- self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels,
- proj_channels=[cbhg_channels, cbhg_channels],
- num_highways=num_highways)
- def forward(self, x, speaker_embedding=None):
- x = self.embedding(x)
- x = self.pre_net(x)
- x.transpose_(1, 2)
- x = self.cbhg(x)
- if speaker_embedding is not None:
- x = self.add_speaker_embedding(x, speaker_embedding)
- return x
- def add_speaker_embedding(self, x, speaker_embedding):
- # SV2TTS
- # The input x is the encoder output and is a 3D tensor with size (batch_size, num_chars, tts_embed_dims)
- # When training, speaker_embedding is also a 2D tensor with size (batch_size, speaker_embedding_size)
- # (for inference, speaker_embedding is a 1D tensor with size (speaker_embedding_size))
- # This concats the speaker embedding for each char in the encoder output
- # Save the dimensions as human-readable names
- batch_size = x.size()[0]
- num_chars = x.size()[1]
- if speaker_embedding.dim() == 1:
- idx = 0
- else:
- idx = 1
- # Start by making a copy of each speaker embedding to match the input text length
- # The output of this has size (batch_size, num_chars * tts_embed_dims)
- speaker_embedding_size = speaker_embedding.size()[idx]
- e = speaker_embedding.repeat_interleave(num_chars, dim=idx)
- # Reshape it and transpose
- e = e.reshape(batch_size, speaker_embedding_size, num_chars)
- e = e.transpose(1, 2)
- # Concatenate the tiled speaker embedding with the encoder output
- x = torch.cat((x, e), 2)
- return x
- class BatchNormConv(nn.Module):
- def __init__(self, in_channels, out_channels, kernel, relu=True):
- super().__init__()
- self.conv = nn.Conv1d(in_channels, out_channels, kernel, stride=1, padding=kernel // 2, bias=False)
- self.bnorm = nn.BatchNorm1d(out_channels)
- self.relu = relu
- def forward(self, x):
- x = self.conv(x)
- x = F.relu(x) if self.relu is True else x
- return self.bnorm(x)
- class CBHG(nn.Module):
- def __init__(self, K, in_channels, channels, proj_channels, num_highways):
- super().__init__()
- # List of all rnns to call `flatten_parameters()` on
- self._to_flatten = []
- self.bank_kernels = [i for i in range(1, K + 1)]
- self.conv1d_bank = nn.ModuleList()
- for k in self.bank_kernels:
- conv = BatchNormConv(in_channels, channels, k)
- self.conv1d_bank.append(conv)
- self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1)
- self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3)
- self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False)
- # Fix the highway input if necessary
- if proj_channels[-1] != channels:
- self.highway_mismatch = True
- self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False)
- else:
- self.highway_mismatch = False
- self.highways = nn.ModuleList()
- for i in range(num_highways):
- hn = HighwayNetwork(channels)
- self.highways.append(hn)
- self.rnn = nn.GRU(channels, channels // 2, batch_first=True, bidirectional=True)
- self._to_flatten.append(self.rnn)
- # Avoid fragmentation of RNN parameters and associated warning
- self._flatten_parameters()
- def forward(self, x):
- # Although we `_flatten_parameters()` on init, when using DataParallel
- # the model gets replicated, making it no longer guaranteed that the
- # weights are contiguous in GPU memory. Hence, we must call it again
- self._flatten_parameters()
- # Save these for later
- residual = x
- seq_len = x.size(-1)
- conv_bank = []
- # Convolution Bank
- for conv in self.conv1d_bank:
- c = conv(x) # Convolution
- conv_bank.append(c[:, :, :seq_len])
- # Stack along the channel axis
- conv_bank = torch.cat(conv_bank, dim=1)
- # dump the last padding to fit residual
- x = self.maxpool(conv_bank)[:, :, :seq_len]
- # Conv1d projections
- x = self.conv_project1(x)
- x = self.conv_project2(x)
- # Residual Connect
- x = x + residual
- # Through the highways
- x = x.transpose(1, 2)
- if self.highway_mismatch is True:
- x = self.pre_highway(x)
- for h in self.highways: x = h(x)
- # And then the RNN
- x, _ = self.rnn(x)
- return x
- def _flatten_parameters(self):
- """Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used
- to improve efficiency and avoid PyTorch yelling at us."""
- [m.flatten_parameters() for m in self._to_flatten]
- class PreNet(nn.Module):
- def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
- super().__init__()
- self.fc1 = nn.Linear(in_dims, fc1_dims)
- self.fc2 = nn.Linear(fc1_dims, fc2_dims)
- self.p = dropout
- def forward(self, x):
- x = self.fc1(x)
- x = F.relu(x)
- x = F.dropout(x, self.p, training=True)
- x = self.fc2(x)
- x = F.relu(x)
- x = F.dropout(x, self.p, training=True)
- return x
- class Attention(nn.Module):
- def __init__(self, attn_dims):
- super().__init__()
- self.W = nn.Linear(attn_dims, attn_dims, bias=False)
- self.v = nn.Linear(attn_dims, 1, bias=False)
- def forward(self, encoder_seq_proj, query, t):
- # print(encoder_seq_proj.shape)
- # Transform the query vector
- query_proj = self.W(query).unsqueeze(1)
- # Compute the scores
- u = self.v(torch.tanh(encoder_seq_proj + query_proj))
- scores = F.softmax(u, dim=1)
- return scores.transpose(1, 2)
- class LSA(nn.Module):
- def __init__(self, attn_dim, kernel_size=31, filters=32):
- super().__init__()
- self.conv = nn.Conv1d(1, filters, padding=(kernel_size - 1) // 2, kernel_size=kernel_size, bias=True)
- self.L = nn.Linear(filters, attn_dim, bias=False)
- self.W = nn.Linear(attn_dim, attn_dim, bias=True) # Include the attention bias in this term
- self.v = nn.Linear(attn_dim, 1, bias=False)
- self.cumulative = None
- self.attention = None
- def init_attention(self, encoder_seq_proj):
- device = next(self.parameters()).device # use same device as parameters
- b, t, c = encoder_seq_proj.size()
- self.cumulative = torch.zeros(b, t, device=device)
- self.attention = torch.zeros(b, t, device=device)
- def forward(self, encoder_seq_proj, query, t, chars):
- if t == 0: self.init_attention(encoder_seq_proj)
- processed_query = self.W(query).unsqueeze(1)
- location = self.cumulative.unsqueeze(1)
- processed_loc = self.L(self.conv(location).transpose(1, 2))
- u = self.v(torch.tanh(processed_query + encoder_seq_proj + processed_loc))
- u = u.squeeze(-1)
- # Mask zero padding chars
- u = u * (chars != 0).float()
- # Smooth Attention
- # scores = torch.sigmoid(u) / torch.sigmoid(u).sum(dim=1, keepdim=True)
- scores = F.softmax(u, dim=1)
- self.attention = scores
- self.cumulative = self.cumulative + self.attention
- return scores.unsqueeze(-1).transpose(1, 2)
- class Decoder(nn.Module):
- # Class variable because its value doesn't change between classes
- # yet ought to be scoped by class because its a property of a Decoder
- max_r = 20
- def __init__(self, n_mels, encoder_dims, decoder_dims, lstm_dims,
- dropout, speaker_embedding_size):
- super().__init__()
- self.register_buffer("r", torch.tensor(1, dtype=torch.int))
- self.n_mels = n_mels
- prenet_dims = (decoder_dims * 2, decoder_dims * 2)
- self.prenet = PreNet(n_mels, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1],
- dropout=dropout)
- self.attn_net = LSA(decoder_dims)
- self.attn_rnn = nn.GRUCell(encoder_dims + prenet_dims[1] + speaker_embedding_size, decoder_dims)
- self.rnn_input = nn.Linear(encoder_dims + decoder_dims + speaker_embedding_size, lstm_dims)
- self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims)
- self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims)
- self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False)
- self.stop_proj = nn.Linear(encoder_dims + speaker_embedding_size + lstm_dims, 1)
- def zoneout(self, prev, current, p=0.1):
- device = next(self.parameters()).device # Use same device as parameters
- mask = torch.zeros(prev.size(), device=device).bernoulli_(p)
- return prev * mask + current * (1 - mask)
- def forward(self, encoder_seq, encoder_seq_proj, prenet_in,
- hidden_states, cell_states, context_vec, t, chars):
- # Need this for reshaping mels
- batch_size = encoder_seq.size(0)
- # Unpack the hidden and cell states
- attn_hidden, rnn1_hidden, rnn2_hidden = hidden_states
- rnn1_cell, rnn2_cell = cell_states
- # PreNet for the Attention RNN
- prenet_out = self.prenet(prenet_in)
- # Compute the Attention RNN hidden state
- attn_rnn_in = torch.cat([context_vec, prenet_out], dim=-1)
- attn_hidden = self.attn_rnn(attn_rnn_in.squeeze(1), attn_hidden)
- # Compute the attention scores
- scores = self.attn_net(encoder_seq_proj, attn_hidden, t, chars)
- # Dot product to create the context vector
- context_vec = scores @ encoder_seq
- context_vec = context_vec.squeeze(1)
- # Concat Attention RNN output w. Context Vector & project
- x = torch.cat([context_vec, attn_hidden], dim=1)
- x = self.rnn_input(x)
- # Compute first Residual RNN
- rnn1_hidden_next, rnn1_cell = self.res_rnn1(x, (rnn1_hidden, rnn1_cell))
- if self.training:
- rnn1_hidden = self.zoneout(rnn1_hidden, rnn1_hidden_next)
- else:
- rnn1_hidden = rnn1_hidden_next
- x = x + rnn1_hidden
- # Compute second Residual RNN
- rnn2_hidden_next, rnn2_cell = self.res_rnn2(x, (rnn2_hidden, rnn2_cell))
- if self.training:
- rnn2_hidden = self.zoneout(rnn2_hidden, rnn2_hidden_next)
- else:
- rnn2_hidden = rnn2_hidden_next
- x = x + rnn2_hidden
- # Project Mels
- mels = self.mel_proj(x)
- mels = mels.view(batch_size, self.n_mels, self.max_r)[:, :, :self.r]
- hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
- cell_states = (rnn1_cell, rnn2_cell)
- # Stop token prediction
- s = torch.cat((x, context_vec), dim=1)
- s = self.stop_proj(s)
- stop_tokens = torch.sigmoid(s)
- return mels, scores, hidden_states, cell_states, context_vec, stop_tokens
- class Tacotron(nn.Module):
- def __init__(self, embed_dims, num_chars, encoder_dims, decoder_dims, n_mels,
- fft_bins, postnet_dims, encoder_K, lstm_dims, postnet_K, num_highways,
- dropout, stop_threshold, speaker_embedding_size):
- super().__init__()
- self.n_mels = n_mels
- self.lstm_dims = lstm_dims
- self.encoder_dims = encoder_dims
- self.decoder_dims = decoder_dims
- self.speaker_embedding_size = speaker_embedding_size
- self.encoder = Encoder(embed_dims, num_chars, encoder_dims,
- encoder_K, num_highways, dropout)
- self.encoder_proj = nn.Linear(encoder_dims + speaker_embedding_size, decoder_dims, bias=False)
- self.decoder = Decoder(n_mels, encoder_dims, decoder_dims, lstm_dims,
- dropout, speaker_embedding_size)
- self.postnet = CBHG(postnet_K, n_mels, postnet_dims,
- [postnet_dims, fft_bins], num_highways)
- self.post_proj = nn.Linear(postnet_dims, fft_bins, bias=False)
- self.init_model()
- self.num_params()
- self.register_buffer("step", torch.zeros(1, dtype=torch.long))
- self.register_buffer("stop_threshold", torch.tensor(stop_threshold, dtype=torch.float32))
- @property
- def r(self):
- return self.decoder.r.item()
- @r.setter
- def r(self, value):
- self.decoder.r = self.decoder.r.new_tensor(value, requires_grad=False)
- def forward(self, x, m, speaker_embedding):
- device = next(self.parameters()).device # use same device as parameters
- self.step += 1
- batch_size, _, steps = m.size()
- # Initialise all hidden states and pack into tuple
- attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device)
- rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
- rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
- hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
- # Initialise all lstm cell states and pack into tuple
- rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
- rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
- cell_states = (rnn1_cell, rnn2_cell)
- # <GO> Frame for start of decoder loop
- go_frame = torch.zeros(batch_size, self.n_mels, device=device)
- # Need an initial context vector
- context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device)
- # SV2TTS: Run the encoder with the speaker embedding
- # The projection avoids unnecessary matmuls in the decoder loop
- encoder_seq = self.encoder(x, speaker_embedding)
- encoder_seq_proj = self.encoder_proj(encoder_seq)
- # Need a couple of lists for outputs
- mel_outputs, attn_scores, stop_outputs = [], [], []
- # Run the decoder loop
- for t in range(0, steps, self.r):
- prenet_in = m[:, :, t - 1] if t > 0 else go_frame
- mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \
- self.decoder(encoder_seq, encoder_seq_proj, prenet_in,
- hidden_states, cell_states, context_vec, t, x)
- mel_outputs.append(mel_frames)
- attn_scores.append(scores)
- stop_outputs.extend([stop_tokens] * self.r)
- # Concat the mel outputs into sequence
- mel_outputs = torch.cat(mel_outputs, dim=2)
- # Post-Process for Linear Spectrograms
- postnet_out = self.postnet(mel_outputs)
- linear = self.post_proj(postnet_out)
- linear = linear.transpose(1, 2)
- # For easy visualisation
- attn_scores = torch.cat(attn_scores, 1)
- # attn_scores = attn_scores.cpu().data.numpy()
- stop_outputs = torch.cat(stop_outputs, 1)
- return mel_outputs, linear, attn_scores, stop_outputs
- def generate(self, x, speaker_embedding=None, steps=2000):
- self.eval()
- device = next(self.parameters()).device # use same device as parameters
- batch_size, _ = x.size()
- # Need to initialise all hidden states and pack into tuple for tidyness
- attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device)
- rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
- rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
- hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
- # Need to initialise all lstm cell states and pack into tuple for tidyness
- rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
- rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
- cell_states = (rnn1_cell, rnn2_cell)
- # Need a <GO> Frame for start of decoder loop
- go_frame = torch.zeros(batch_size, self.n_mels, device=device)
- # Need an initial context vector
- context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device)
- # SV2TTS: Run the encoder with the speaker embedding
- # The projection avoids unnecessary matmuls in the decoder loop
- encoder_seq = self.encoder(x, speaker_embedding)
- encoder_seq_proj = self.encoder_proj(encoder_seq)
- # Need a couple of lists for outputs
- mel_outputs, attn_scores, stop_outputs = [], [], []
- # Run the decoder loop
- for t in range(0, steps, self.r):
- prenet_in = mel_outputs[-1][:, :, -1] if t > 0 else go_frame
- mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \
- self.decoder(encoder_seq, encoder_seq_proj, prenet_in,
- hidden_states, cell_states, context_vec, t, x)
- mel_outputs.append(mel_frames)
- attn_scores.append(scores)
- stop_outputs.extend([stop_tokens] * self.r)
- # Stop the loop when all stop tokens in batch exceed threshold
- if (stop_tokens > 0.5).all() and t > 10: break
- # Concat the mel outputs into sequence
- mel_outputs = torch.cat(mel_outputs, dim=2)
- # Post-Process for Linear Spectrograms
- postnet_out = self.postnet(mel_outputs)
- linear = self.post_proj(postnet_out)
- linear = linear.transpose(1, 2)
- # For easy visualisation
- attn_scores = torch.cat(attn_scores, 1)
- stop_outputs = torch.cat(stop_outputs, 1)
- self.train()
- return mel_outputs, linear, attn_scores
- def init_model(self):
- for p in self.parameters():
- if p.dim() > 1: nn.init.xavier_uniform_(p)
- def get_step(self):
- return self.step.data.item()
- def reset_step(self):
- # assignment to parameters or buffers is overloaded, updates internal dict entry
- self.step = self.step.data.new_tensor(1)
- def log(self, path, msg):
- with open(path, "a") as f:
- print(msg, file=f)
- def load(self, path, optimizer=None):
- # Use device of model params as location for loaded state
- device = next(self.parameters()).device
- checkpoint = torch.load(str(path), map_location=device)
- self.load_state_dict(checkpoint["model_state"])
- if "optimizer_state" in checkpoint and optimizer is not None:
- optimizer.load_state_dict(checkpoint["optimizer_state"])
- def save(self, path, optimizer=None):
- if optimizer is not None:
- torch.save({
- "model_state": self.state_dict(),
- "optimizer_state": optimizer.state_dict(),
- }, str(path))
- else:
- torch.save({
- "model_state": self.state_dict(),
- }, str(path))
- def num_params(self, print_out=True):
- parameters = filter(lambda p: p.requires_grad, self.parameters())
- parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
- if print_out:
- print("Trainable Parameters: %.3fM" % parameters)
- return parameters
|