123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- from datetime import datetime
- from time import perf_counter as timer
- import numpy as np
- import umap
- import visdom
- from encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataset
- colormap = np.array([
- [76, 255, 0],
- [0, 127, 70],
- [255, 0, 0],
- [255, 217, 38],
- [0, 135, 255],
- [165, 0, 165],
- [255, 167, 255],
- [0, 255, 255],
- [255, 96, 38],
- [142, 76, 0],
- [33, 0, 127],
- [0, 0, 0],
- [183, 183, 183],
- ], dtype=np.float) / 255
- class Visualizations:
- def __init__(self, env_name=None, update_every=10, server="http://localhost", disabled=False):
- # Tracking data
- self.last_update_timestamp = timer()
- self.update_every = update_every
- self.step_times = []
- self.losses = []
- self.eers = []
- print("Updating the visualizations every %d steps." % update_every)
- # If visdom is disabled TODO: use a better paradigm for that
- self.disabled = disabled
- if self.disabled:
- return
- # Set the environment name
- now = str(datetime.now().strftime("%d-%m %Hh%M"))
- if env_name is None:
- self.env_name = now
- else:
- self.env_name = "%s (%s)" % (env_name, now)
- # Connect to visdom and open the corresponding window in the browser
- try:
- self.vis = visdom.Visdom(server, env=self.env_name, raise_exceptions=True)
- except ConnectionError:
- raise Exception("No visdom server detected. Run the command \"visdom\" in your CLI to "
- "start it.")
- # webbrowser.open("http://localhost:8097/env/" + self.env_name)
- # Create the windows
- self.loss_win = None
- self.eer_win = None
- # self.lr_win = None
- self.implementation_win = None
- self.projection_win = None
- self.implementation_string = ""
- def log_params(self):
- if self.disabled:
- return
- from encoder import params_data
- from encoder import params_model
- param_string = "<b>Model parameters</b>:<br>"
- for param_name in (p for p in dir(params_model) if not p.startswith("__")):
- value = getattr(params_model, param_name)
- param_string += "\t%s: %s<br>" % (param_name, value)
- param_string += "<b>Data parameters</b>:<br>"
- for param_name in (p for p in dir(params_data) if not p.startswith("__")):
- value = getattr(params_data, param_name)
- param_string += "\t%s: %s<br>" % (param_name, value)
- self.vis.text(param_string, opts={"title": "Parameters"})
- def log_dataset(self, dataset: SpeakerVerificationDataset):
- if self.disabled:
- return
- dataset_string = ""
- dataset_string += "<b>Speakers</b>: %s\n" % len(dataset.speakers)
- dataset_string += "\n" + dataset.get_logs()
- dataset_string = dataset_string.replace("\n", "<br>")
- self.vis.text(dataset_string, opts={"title": "Dataset"})
- def log_implementation(self, params):
- if self.disabled:
- return
- implementation_string = ""
- for param, value in params.items():
- implementation_string += "<b>%s</b>: %s\n" % (param, value)
- implementation_string = implementation_string.replace("\n", "<br>")
- self.implementation_string = implementation_string
- self.implementation_win = self.vis.text(
- implementation_string,
- opts={"title": "Training implementation"}
- )
- def update(self, loss, eer, step):
- # Update the tracking data
- now = timer()
- self.step_times.append(1000 * (now - self.last_update_timestamp))
- self.last_update_timestamp = now
- self.losses.append(loss)
- self.eers.append(eer)
- print(".", end="")
- # Update the plots every <update_every> steps
- if step % self.update_every != 0:
- return
- time_string = "Step time: mean: %5dms std: %5dms" % \
- (int(np.mean(self.step_times)), int(np.std(self.step_times)))
- print("\nStep %6d Loss: %.4f EER: %.4f %s" %
- (step, np.mean(self.losses), np.mean(self.eers), time_string))
- if not self.disabled:
- self.loss_win = self.vis.line(
- [np.mean(self.losses)],
- [step],
- win=self.loss_win,
- update="append" if self.loss_win else None,
- opts=dict(
- legend=["Avg. loss"],
- xlabel="Step",
- ylabel="Loss",
- title="Loss",
- )
- )
- self.eer_win = self.vis.line(
- [np.mean(self.eers)],
- [step],
- win=self.eer_win,
- update="append" if self.eer_win else None,
- opts=dict(
- legend=["Avg. EER"],
- xlabel="Step",
- ylabel="EER",
- title="Equal error rate"
- )
- )
- if self.implementation_win is not None:
- self.vis.text(
- self.implementation_string + ("<b>%s</b>" % time_string),
- win=self.implementation_win,
- opts={"title": "Training implementation"},
- )
- # Reset the tracking
- self.losses.clear()
- self.eers.clear()
- self.step_times.clear()
- def draw_projections(self, embeds, utterances_per_speaker, step, out_fpath=None, max_speakers=10):
- import matplotlib.pyplot as plt
- max_speakers = min(max_speakers, len(colormap))
- embeds = embeds[:max_speakers * utterances_per_speaker]
- n_speakers = len(embeds) // utterances_per_speaker
- ground_truth = np.repeat(np.arange(n_speakers), utterances_per_speaker)
- colors = [colormap[i] for i in ground_truth]
- reducer = umap.UMAP()
- projected = reducer.fit_transform(embeds)
- plt.scatter(projected[:, 0], projected[:, 1], c=colors)
- plt.gca().set_aspect("equal", "datalim")
- plt.title("UMAP projection (step %d)" % step)
- if not self.disabled:
- self.projection_win = self.vis.matplot(plt, win=self.projection_win)
- if out_fpath is not None:
- plt.savefig(out_fpath)
- plt.clf()
- def save(self):
- if not self.disabled:
- self.vis.save([self.env_name])
|