speaker.py 1.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. from encoder.data_objects.random_cycler import RandomCycler
  2. from encoder.data_objects.utterance import Utterance
  3. from pathlib import Path
  4. # Contains the set of utterances of a single speaker
  5. class Speaker:
  6. def __init__(self, root: Path):
  7. self.root = root
  8. self.name = root.name
  9. self.utterances = None
  10. self.utterance_cycler = None
  11. def _load_utterances(self):
  12. with self.root.joinpath("_sources.txt").open("r") as sources_file:
  13. sources = [l.split(",") for l in sources_file]
  14. sources = {frames_fname: wave_fpath for frames_fname, wave_fpath in sources}
  15. self.utterances = [Utterance(self.root.joinpath(f), w) for f, w in sources.items()]
  16. self.utterance_cycler = RandomCycler(self.utterances)
  17. def random_partial(self, count, n_frames):
  18. """
  19. Samples a batch of <count> unique partial utterances from the disk in a way that all
  20. utterances come up at least once every two cycles and in a random order every time.
  21. :param count: The number of partial utterances to sample from the set of utterances from
  22. that speaker. Utterances are guaranteed not to be repeated if <count> is not larger than
  23. the number of utterances available.
  24. :param n_frames: The number of frames in the partial utterance.
  25. :return: A list of tuples (utterance, frames, range) where utterance is an Utterance,
  26. frames are the frames of the partial utterances and range is the range of the partial
  27. utterance with regard to the complete utterance.
  28. """
  29. if self.utterances is None:
  30. self._load_utterances()
  31. utterances = self.utterance_cycler.sample(count)
  32. a = [(u,) + u.random_partial(n_frames) for u in utterances]
  33. return a