123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- from scipy.ndimage.morphology import binary_dilation
- from encoder.params_data import *
- from pathlib import Path
- from typing import Optional, Union
- from warnings import warn
- import numpy as np
- import librosa
- import struct
- try:
- import webrtcvad
- except:
- warn("Unable to import 'webrtcvad'. This package enables noise removal and is recommended.")
- webrtcvad=None
- int16_max = (2 ** 15) - 1
- def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray],
- source_sr: Optional[int] = None,
- normalize: Optional[bool] = True,
- trim_silence: Optional[bool] = True):
- """
- Applies the preprocessing operations used in training the Speaker Encoder to a waveform
- either on disk or in memory. The waveform will be resampled to match the data hyperparameters.
- :param fpath_or_wav: either a filepath to an audio file (many extensions are supported, not
- just .wav), either the waveform as a numpy array of floats.
- :param source_sr: if passing an audio waveform, the sampling rate of the waveform before
- preprocessing. After preprocessing, the waveform's sampling rate will match the data
- hyperparameters. If passing a filepath, the sampling rate will be automatically detected and
- this argument will be ignored.
- """
- # Load the wav from disk if needed
- if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path):
- wav, source_sr = librosa.load(str(fpath_or_wav), sr=None)
- else:
- wav = fpath_or_wav
-
- # Resample the wav if needed
- if source_sr is not None and source_sr != sampling_rate:
- wav = librosa.resample(wav, source_sr, sampling_rate)
-
- # Apply the preprocessing: normalize volume and shorten long silences
- if normalize:
- wav = normalize_volume(wav, audio_norm_target_dBFS, increase_only=True)
- if webrtcvad and trim_silence:
- wav = trim_long_silences(wav)
-
- return wav
- def wav_to_mel_spectrogram(wav):
- """
- Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform.
- Note: this not a log-mel spectrogram.
- """
- frames = librosa.feature.melspectrogram(
- wav,
- sampling_rate,
- n_fft=int(sampling_rate * mel_window_length / 1000),
- hop_length=int(sampling_rate * mel_window_step / 1000),
- n_mels=mel_n_channels
- )
- return frames.astype(np.float32).T
- def trim_long_silences(wav):
- """
- Ensures that segments without voice in the waveform remain no longer than a
- threshold determined by the VAD parameters in params.py.
- :param wav: the raw waveform as a numpy array of floats
- :return: the same waveform with silences trimmed away (length <= original wav length)
- """
- # Compute the voice detection window size
- samples_per_window = (vad_window_length * sampling_rate) // 1000
-
- # Trim the end of the audio to have a multiple of the window size
- wav = wav[:len(wav) - (len(wav) % samples_per_window)]
-
- # Convert the float waveform to 16-bit mono PCM
- pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16))
-
- # Perform voice activation detection
- voice_flags = []
- vad = webrtcvad.Vad(mode=3)
- for window_start in range(0, len(wav), samples_per_window):
- window_end = window_start + samples_per_window
- voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
- sample_rate=sampling_rate))
- voice_flags = np.array(voice_flags)
-
- # Smooth the voice detection with a moving average
- def moving_average(array, width):
- array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2)))
- ret = np.cumsum(array_padded, dtype=float)
- ret[width:] = ret[width:] - ret[:-width]
- return ret[width - 1:] / width
-
- audio_mask = moving_average(voice_flags, vad_moving_average_width)
- audio_mask = np.round(audio_mask).astype(np.bool)
-
- # Dilate the voiced regions
- audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))
- audio_mask = np.repeat(audio_mask, samples_per_window)
-
- return wav[audio_mask == True]
- def normalize_volume(wav, target_dBFS, increase_only=False, decrease_only=False):
- if increase_only and decrease_only:
- raise ValueError("Both increase only and decrease only are set")
- dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav ** 2))
- if (dBFS_change < 0 and increase_only) or (dBFS_change > 0 and decrease_only):
- return wav
- return wav * (10 ** (dBFS_change / 20))
|