123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843 |
- import os,shutil,sys,pdb,re
- now_dir = os.getcwd()
- sys.path.append(now_dir)
- import json,yaml,warnings,torch
- import platform
- import psutil
- import signal
- warnings.filterwarnings("ignore")
- torch.manual_seed(233333)
- tmp = os.path.join(now_dir, "TEMP")
- os.makedirs(tmp, exist_ok=True)
- os.environ["TEMP"] = tmp
- if(os.path.exists(tmp)):
- for name in os.listdir(tmp):
- if(name=="jieba.cache"):continue
- path="%s/%s"%(tmp,name)
- delete=os.remove if os.path.isfile(path) else shutil.rmtree
- try:
- delete(path)
- except Exception as e:
- print(str(e))
- pass
- import site
- site_packages_roots = []
- for path in site.getsitepackages():
- if "packages" in path:
- site_packages_roots.append(path)
- if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir]
- #os.environ["OPENBLAS_NUM_THREADS"] = "4"
- os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
- os.environ["all_proxy"] = ""
- for site_packages_root in site_packages_roots:
- if os.path.exists(site_packages_root):
- try:
- with open("%s/users.pth" % (site_packages_root), "w") as f:
- f.write(
- "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"
- % (now_dir, now_dir, now_dir, now_dir, now_dir)
- )
- break
- except PermissionError:
- pass
- from tools import my_utils
- import traceback
- import shutil
- import pdb
- import gradio as gr
- from subprocess import Popen
- import signal
- from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
- from tools.i18n.i18n import I18nAuto
- i18n = I18nAuto()
- from scipy.io import wavfile
- from tools.my_utils import load_audio
- from multiprocessing import cpu_count
- os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
- n_cpu=cpu_count()
-
- ngpu = torch.cuda.device_count()
- gpu_infos = []
- mem = []
- if_gpu_ok = False
- # 判断是否有能用来训练和加速推理的N卡
- if torch.cuda.is_available() or ngpu != 0:
- for i in range(ngpu):
- gpu_name = torch.cuda.get_device_name(i)
- if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060"]):
- # A10#A100#V100#A40#P40#M40#K80#A4500
- if_gpu_ok = True # 至少有一张能用的N卡
- gpu_infos.append("%s\t%s" % (i, gpu_name))
- mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
- # 判断是否支持mps加速
- if torch.backends.mps.is_available():
- if_gpu_ok = True
- gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
- mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
- if if_gpu_ok and len(gpu_infos) > 0:
- gpu_info = "\n".join(gpu_infos)
- default_batch_size = min(mem) // 2
- else:
- gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
- default_batch_size = 1
- gpus = "-".join([i[0] for i in gpu_infos])
- pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
- pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
- def get_weights_names():
- SoVITS_names = [pretrained_sovits_name]
- for name in os.listdir(SoVITS_weight_root):
- if name.endswith(".pth"):SoVITS_names.append(name)
- GPT_names = [pretrained_gpt_name]
- for name in os.listdir(GPT_weight_root):
- if name.endswith(".ckpt"): GPT_names.append(name)
- return SoVITS_names,GPT_names
- SoVITS_weight_root="SoVITS_weights"
- GPT_weight_root="GPT_weights"
- os.makedirs(SoVITS_weight_root,exist_ok=True)
- os.makedirs(GPT_weight_root,exist_ok=True)
- SoVITS_names,GPT_names = get_weights_names()
- def custom_sort_key(s):
- # 使用正则表达式提取字符串中的数字部分和非数字部分
- parts = re.split('(\d+)', s)
- # 将数字部分转换为整数,非数字部分保持不变
- parts = [int(part) if part.isdigit() else part for part in parts]
- return parts
- def change_choices():
- SoVITS_names, GPT_names = get_weights_names()
- return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
- p_label=None
- p_uvr5=None
- p_asr=None
- p_tts_inference=None
- def kill_proc_tree(pid, including_parent=True):
- try:
- parent = psutil.Process(pid)
- except psutil.NoSuchProcess:
- # Process already terminated
- return
- children = parent.children(recursive=True)
- for child in children:
- try:
- os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
- except OSError:
- pass
- if including_parent:
- try:
- os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
- except OSError:
- pass
- system=platform.system()
- def kill_process(pid):
- if(system=="Windows"):
- cmd = "taskkill /t /f /pid %s" % pid
- os.system(cmd)
- else:
- kill_proc_tree(pid)
-
- def change_label(if_label,path_list):
- global p_label
- if(if_label==True and p_label==None):
- path_list=my_utils.clean_path(path_list)
- cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share)
- yield i18n("打标工具WebUI已开启")
- print(cmd)
- p_label = Popen(cmd, shell=True)
- elif(if_label==False and p_label!=None):
- kill_process(p_label.pid)
- p_label=None
- yield i18n("打标工具WebUI已关闭")
- def change_uvr5(if_uvr5):
- global p_uvr5
- if(if_uvr5==True and p_uvr5==None):
- cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share)
- yield i18n("UVR5已开启")
- print(cmd)
- p_uvr5 = Popen(cmd, shell=True)
- elif(if_uvr5==False and p_uvr5!=None):
- kill_process(p_uvr5.pid)
- p_uvr5=None
- yield i18n("UVR5已关闭")
- def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path):
- global p_tts_inference
- if(if_tts==True and p_tts_inference==None):
- os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path)
- os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path)
- os.environ["cnhubert_base_path"]=cnhubert_base_path
- os.environ["bert_path"]=bert_path
- os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_number
- os.environ["is_half"]=str(is_half)
- os.environ["infer_ttswebui"]=str(webui_port_infer_tts)
- os.environ["is_share"]=str(is_share)
- cmd = '"%s" GPT_SoVITS/inference_webui.py'%(python_exec)
- yield i18n("TTS推理进程已开启")
- print(cmd)
- p_tts_inference = Popen(cmd, shell=True)
- elif(if_tts==False and p_tts_inference!=None):
- kill_process(p_tts_inference.pid)
- p_tts_inference=None
- yield i18n("TTS推理进程已关闭")
- from tools.asr.config import asr_dict
- def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang):
- global p_asr
- if(p_asr==None):
- asr_inp_dir=my_utils.clean_path(asr_inp_dir)
- cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}'
- cmd += f' -i "{asr_inp_dir}"'
- cmd += f' -o "{asr_opt_dir}"'
- cmd += f' -s {asr_model_size}'
- cmd += f' -l {asr_lang}'
- cmd += " -p %s"%("float16"if is_half==True else "float32")
- yield "ASR任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
- print(cmd)
- p_asr = Popen(cmd, shell=True)
- p_asr.wait()
- p_asr=None
- yield f"ASR任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- else:
- yield "已有正在进行的ASR任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
- # return None
- def close_asr():
- global p_asr
- if(p_asr!=None):
- kill_process(p_asr.pid)
- p_asr=None
- return "已终止ASR进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- p_train_SoVITS=None
- def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D):
- global p_train_SoVITS
- if(p_train_SoVITS==None):
- with open("GPT_SoVITS/configs/s2.json")as f:
- data=f.read()
- data=json.loads(data)
- s2_dir="%s/%s"%(exp_root,exp_name)
- os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True)
- if(is_half==False):
- data["train"]["fp16_run"]=False
- batch_size=max(1,batch_size//2)
- data["train"]["batch_size"]=batch_size
- data["train"]["epochs"]=total_epoch
- data["train"]["text_low_lr_rate"]=text_low_lr_rate
- data["train"]["pretrained_s2G"]=pretrained_s2G
- data["train"]["pretrained_s2D"]=pretrained_s2D
- data["train"]["if_save_latest"]=if_save_latest
- data["train"]["if_save_every_weights"]=if_save_every_weights
- data["train"]["save_every_epoch"]=save_every_epoch
- data["train"]["gpu_numbers"]=gpu_numbers1Ba
- data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir
- data["save_weight_dir"]=SoVITS_weight_root
- data["name"]=exp_name
- tmp_config_path="%s/tmp_s2.json"%tmp
- with open(tmp_config_path,"w")as f:f.write(json.dumps(data))
- cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path)
- yield "SoVITS训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
- print(cmd)
- p_train_SoVITS = Popen(cmd, shell=True)
- p_train_SoVITS.wait()
- p_train_SoVITS=None
- yield "SoVITS训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- else:
- yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
- def close1Ba():
- global p_train_SoVITS
- if(p_train_SoVITS!=None):
- kill_process(p_train_SoVITS.pid)
- p_train_SoVITS=None
- return "已终止SoVITS训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- p_train_GPT=None
- def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1):
- global p_train_GPT
- if(p_train_GPT==None):
- with open("GPT_SoVITS/configs/s1longer.yaml")as f:
- data=f.read()
- data=yaml.load(data, Loader=yaml.FullLoader)
- s1_dir="%s/%s"%(exp_root,exp_name)
- os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True)
- if(is_half==False):
- data["train"]["precision"]="32"
- batch_size = max(1, batch_size // 2)
- data["train"]["batch_size"]=batch_size
- data["train"]["epochs"]=total_epoch
- data["pretrained_s1"]=pretrained_s1
- data["train"]["save_every_n_epoch"]=save_every_epoch
- data["train"]["if_save_every_weights"]=if_save_every_weights
- data["train"]["if_save_latest"]=if_save_latest
- data["train"]["if_dpo"]=if_dpo
- data["train"]["half_weights_save_dir"]=GPT_weight_root
- data["train"]["exp_name"]=exp_name
- data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir
- data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir
- data["output_dir"]="%s/logs_s1"%s1_dir
- os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_numbers.replace("-",",")
- os.environ["hz"]="25hz"
- tmp_config_path="%s/tmp_s1.yaml"%tmp
- with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False))
- # cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
- cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path)
- yield "GPT训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
- print(cmd)
- p_train_GPT = Popen(cmd, shell=True)
- p_train_GPT.wait()
- p_train_GPT=None
- yield "GPT训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- else:
- yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
- def close1Bb():
- global p_train_GPT
- if(p_train_GPT!=None):
- kill_process(p_train_GPT.pid)
- p_train_GPT=None
- return "已终止GPT训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- ps_slice=[]
- def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
- global ps_slice
- inp = my_utils.clean_path(inp)
- opt_root = my_utils.clean_path(opt_root)
- if(os.path.exists(inp)==False):
- yield "输入路径不存在",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- return
- if os.path.isfile(inp):n_parts=1
- elif os.path.isdir(inp):pass
- else:
- yield "输入路径存在但既不是文件也不是文件夹",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- return
- if (ps_slice == []):
- for i_part in range(n_parts):
- cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
- print(cmd)
- p = Popen(cmd, shell=True)
- ps_slice.append(p)
- yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps_slice:
- p.wait()
- ps_slice=[]
- yield "切割结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- else:
- yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- def close_slice():
- global ps_slice
- if (ps_slice != []):
- for p_slice in ps_slice:
- try:
- kill_process(p_slice.pid)
- except:
- traceback.print_exc()
- ps_slice=[]
- return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- ps1a=[]
- def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
- global ps1a
- inp_text = my_utils.clean_path(inp_text)
- inp_wav_dir = my_utils.clean_path(inp_wav_dir)
- if (ps1a == []):
- opt_dir="%s/%s"%(exp_root,exp_name)
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "bert_pretrained_dir":bert_pretrained_dir,
- }
- gpu_names=gpu_numbers.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
- "is_half": str(is_half)
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1a.append(p)
- yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1a:
- p.wait()
- opt = []
- for i_part in range(all_parts):
- txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
- with open(txt_path, "r", encoding="utf8") as f:
- opt += f.read().strip("\n").split("\n")
- os.remove(txt_path)
- path_text = "%s/2-name2text.txt" % opt_dir
- with open(path_text, "w", encoding="utf8") as f:
- f.write("\n".join(opt) + "\n")
- ps1a=[]
- yield "文本进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- else:
- yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- def close1a():
- global ps1a
- if (ps1a != []):
- for p1a in ps1a:
- try:
- kill_process(p1a.pid)
- except:
- traceback.print_exc()
- ps1a=[]
- return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- ps1b=[]
- def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
- global ps1b
- inp_text = my_utils.clean_path(inp_text)
- inp_wav_dir = my_utils.clean_path(inp_wav_dir)
- if (ps1b == []):
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":"%s/%s"%(exp_root,exp_name),
- "cnhubert_base_dir":ssl_pretrained_dir,
- "is_half": str(is_half)
- }
- gpu_names=gpu_numbers.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1b.append(p)
- yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1b:
- p.wait()
- ps1b=[]
- yield "SSL提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- else:
- yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- def close1b():
- global ps1b
- if (ps1b != []):
- for p1b in ps1b:
- try:
- kill_process(p1b.pid)
- except:
- traceback.print_exc()
- ps1b=[]
- return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- ps1c=[]
- def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
- global ps1c
- inp_text = my_utils.clean_path(inp_text)
- if (ps1c == []):
- opt_dir="%s/%s"%(exp_root,exp_name)
- config={
- "inp_text":inp_text,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "pretrained_s2G":pretrained_s2G_path,
- "s2config_path":"GPT_SoVITS/configs/s2.json",
- "is_half": str(is_half)
- }
- gpu_names=gpu_numbers.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1c.append(p)
- yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1c:
- p.wait()
- opt = ["item_name\tsemantic_audio"]
- path_semantic = "%s/6-name2semantic.tsv" % opt_dir
- for i_part in range(all_parts):
- semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
- with open(semantic_path, "r", encoding="utf8") as f:
- opt += f.read().strip("\n").split("\n")
- os.remove(semantic_path)
- with open(path_semantic, "w", encoding="utf8") as f:
- f.write("\n".join(opt) + "\n")
- ps1c=[]
- yield "语义token提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
- else:
- yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- def close1c():
- global ps1c
- if (ps1c != []):
- for p1c in ps1c:
- try:
- kill_process(p1c.pid)
- except:
- traceback.print_exc()
- ps1c=[]
- return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- #####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G
- ps1abc=[]
- def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path):
- global ps1abc
- inp_text = my_utils.clean_path(inp_text)
- inp_wav_dir = my_utils.clean_path(inp_wav_dir)
- if (ps1abc == []):
- opt_dir="%s/%s"%(exp_root,exp_name)
- try:
- #############################1a
- path_text="%s/2-name2text.txt" % opt_dir
- if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)):
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "bert_pretrained_dir":bert_pretrained_dir,
- "is_half": str(is_half)
- }
- gpu_names=gpu_numbers1a.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1abc.append(p)
- yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1abc:p.wait()
- opt = []
- for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
- txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
- with open(txt_path, "r",encoding="utf8") as f:
- opt += f.read().strip("\n").split("\n")
- os.remove(txt_path)
- with open(path_text, "w",encoding="utf8") as f:
- f.write("\n".join(opt) + "\n")
- yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- ps1abc=[]
- #############################1b
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "cnhubert_base_dir":ssl_pretrained_dir,
- }
- gpu_names=gpu_numbers1Ba.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1abc.append(p)
- yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1abc:p.wait()
- yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- ps1abc=[]
- #############################1c
- path_semantic = "%s/6-name2semantic.tsv" % opt_dir
- if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)):
- config={
- "inp_text":inp_text,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "pretrained_s2G":pretrained_s2G_path,
- "s2config_path":"GPT_SoVITS/configs/s2.json",
- }
- gpu_names=gpu_numbers1c.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1abc.append(p)
- yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1abc:p.wait()
- opt = ["item_name\tsemantic_audio"]
- for i_part in range(all_parts):
- semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
- with open(semantic_path, "r",encoding="utf8") as f:
- opt += f.read().strip("\n").split("\n")
- os.remove(semantic_path)
- with open(path_semantic, "w",encoding="utf8") as f:
- f.write("\n".join(opt) + "\n")
- yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- ps1abc = []
- yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- except:
- traceback.print_exc()
- close1abc()
- yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- else:
- yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- def close1abc():
- global ps1abc
- if (ps1abc != []):
- for p1abc in ps1abc:
- try:
- kill_process(p1abc.pid)
- except:
- traceback.print_exc()
- ps1abc=[]
- return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- with gr.Blocks(title="GPT-SoVITS WebUI") as app:
- gr.Markdown(
- value=
- i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
- )
- gr.Markdown(
- value=
- i18n("中文教程文档:https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e")
- )
- with gr.Tabs():
- with gr.TabItem(i18n("0-前置数据集获取工具")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
- gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具"))
- with gr.Row():
- if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True)
- uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息"))
- gr.Markdown(value=i18n("0b-语音切分工具"))
- with gr.Row():
- with gr.Row():
- slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="")
- slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt")
- threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34")
- min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000")
- min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300")
- hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10")
- max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500")
- with gr.Row():
- open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True)
- close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False)
- _max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True)
- alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True)
- n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True)
- slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))
- gr.Markdown(value=i18n("0c-中文批量离线ASR工具"))
- with gr.Row():
- open_asr_button = gr.Button(i18n("开启离线批量ASR"), variant="primary",visible=True)
- close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False)
- with gr.Column():
- with gr.Row():
- asr_inp_dir = gr.Textbox(
- label=i18n("输入文件夹路径"),
- value="D:\\GPT-SoVITS\\raw\\xxx",
- interactive=True,
- )
- asr_opt_dir = gr.Textbox(
- label = i18n("输出文件夹路径"),
- value = "output/asr_opt",
- interactive = True,
- )
- with gr.Row():
- asr_model = gr.Dropdown(
- label = i18n("ASR 模型"),
- choices = list(asr_dict.keys()),
- interactive = True,
- value="达摩 ASR (中文)"
- )
- asr_size = gr.Dropdown(
- label = i18n("ASR 模型尺寸"),
- choices = ["large"],
- interactive = True,
- value="large"
- )
- asr_lang = gr.Dropdown(
- label = i18n("ASR 语言设置"),
- choices = ["zh"],
- interactive = True,
- value="zh"
- )
- with gr.Row():
- asr_info = gr.Textbox(label=i18n("ASR进程输出信息"))
- def change_lang_choices(key): #根据选择的模型修改可选的语言
- # return gr.Dropdown(choices=asr_dict[key]['lang'])
- return {"__type__": "update", "choices": asr_dict[key]['lang'],"value":asr_dict[key]['lang'][0]}
- def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸
- # return gr.Dropdown(choices=asr_dict[key]['size'])
- return {"__type__": "update", "choices": asr_dict[key]['size']}
- asr_model.change(change_lang_choices, [asr_model], [asr_lang])
- asr_model.change(change_size_choices, [asr_model], [asr_size])
-
- gr.Markdown(value=i18n("0d-语音文本校对标注工具"))
- with gr.Row():
- if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True)
- path_list = gr.Textbox(
- label=i18n(".list标注文件的路径"),
- value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list",
- interactive=True,
- )
- label_info = gr.Textbox(label=i18n("打标工具进程输出信息"))
- if_label.change(change_label, [if_label,path_list], [label_info])
- if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info])
- open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang], [asr_info,open_asr_button,close_asr_button])
- close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button])
- open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button])
- close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button])
- with gr.TabItem(i18n("1-GPT-SoVITS-TTS")):
- with gr.Row():
- exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True)
- gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False)
- pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value="GPT_SoVITS/pretrained_models/s2G488k.pth", interactive=True)
- pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value="GPT_SoVITS/pretrained_models/s2D488k.pth", interactive=True)
- pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", interactive=True)
- with gr.TabItem(i18n("1A-训练集格式化工具")):
- gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹"))
- with gr.Row():
- inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True)
- inp_wav_dir = gr.Textbox(
- label=i18n("*训练集音频文件目录"),
- # value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",
- interactive=True,
- placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。")
- )
- gr.Markdown(value=i18n("1Aa-文本内容"))
- with gr.Row():
- gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
- bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False)
- button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True)
- button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False)
- info1a=gr.Textbox(label=i18n("文本进程输出信息"))
- gr.Markdown(value=i18n("1Ab-SSL自监督特征提取"))
- with gr.Row():
- gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
- cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False)
- button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True)
- button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False)
- info1b=gr.Textbox(label=i18n("SSL进程输出信息"))
- gr.Markdown(value=i18n("1Ac-语义token提取"))
- with gr.Row():
- gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
- button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True)
- button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False)
- info1c=gr.Textbox(label=i18n("语义token提取进程输出信息"))
- gr.Markdown(value=i18n("1Aabc-训练集格式化一键三连"))
- with gr.Row():
- button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True)
- button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False)
- info1abc=gr.Textbox(label=i18n("一键三连进程输出信息"))
- button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close])
- button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close])
- button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close])
- button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close])
- button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close])
- button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close])
- button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close])
- button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close])
- with gr.TabItem(i18n("1B-微调训练")):
- gr.Markdown(value=i18n("1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。"))
- with gr.Row():
- batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
- total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True)
- text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True)
- save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True)
- if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
- if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
- gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
- with gr.Row():
- button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True)
- button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False)
- info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息"))
- gr.Markdown(value=i18n("1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。"))
- with gr.Row():
- batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
- total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True)
- if_dpo = gr.Checkbox(label=i18n("是否开启dpo训练选项(实验性)"), value=False, interactive=True, show_label=True)
- if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
- if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
- save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True)
- gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
- with gr.Row():
- button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True)
- button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False)
- info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息"))
- button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close])
- button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close])
- button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_dpo,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close])
- button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close])
- with gr.TabItem(i18n("1C-推理")):
- gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。"))
- with gr.Row():
- GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name,interactive=True)
- SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name,interactive=True)
- gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True)
- refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
- refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown])
- with gr.Row():
- if_tts = gr.Checkbox(label=i18n("是否开启TTS推理WebUI"), show_label=True)
- tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息"))
- if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info])
- with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音"))
- app.queue(concurrency_count=511, max_size=1022).launch(
- server_name="0.0.0.0",
- inbrowser=True,
- share=is_share,
- server_port=webui_port_main,
- quiet=True,
- )
|