123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510 |
- """
- # api.py usage
- ` python api.py -dr "123.wav" -dt "一二三。" -dl "zh" `
- ## 执行参数:
- `-s` - `SoVITS模型路径, 可在 config.py 中指定`
- `-g` - `GPT模型路径, 可在 config.py 中指定`
- 调用请求缺少参考音频时使用
- `-dr` - `默认参考音频路径`
- `-dt` - `默认参考音频文本`
- `-dl` - `默认参考音频语种, "中文","英文","日文","zh","en","ja"`
- `-d` - `推理设备, "cuda","cpu","mps"`
- `-a` - `绑定地址, 默认"127.0.0.1"`
- `-p` - `绑定端口, 默认9880, 可在 config.py 中指定`
- `-fp` - `覆盖 config.py 使用全精度`
- `-hp` - `覆盖 config.py 使用半精度`
- `-hb` - `cnhubert路径`
- `-b` - `bert路径`
- ## 调用:
- ### 推理
- endpoint: `/`
- 使用执行参数指定的参考音频:
- GET:
- `http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh`
- POST:
- ```json
- {
- "text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
- "text_language": "zh"
- }
- ```
- 手动指定当次推理所使用的参考音频:
- GET:
- `http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh`
- POST:
- ```json
- {
- "refer_wav_path": "123.wav",
- "prompt_text": "一二三。",
- "prompt_language": "zh",
- "text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
- "text_language": "zh"
- }
- ```
- RESP:
- 成功: 直接返回 wav 音频流, http code 200
- 失败: 返回包含错误信息的 json, http code 400
- ### 更换默认参考音频
- endpoint: `/change_refer`
- key与推理端一样
- GET:
- `http://127.0.0.1:9880/change_refer?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh`
- POST:
- ```json
- {
- "refer_wav_path": "123.wav",
- "prompt_text": "一二三。",
- "prompt_language": "zh"
- }
- ```
- RESP:
- 成功: json, http code 200
- 失败: json, 400
- ### 命令控制
- endpoint: `/control`
- command:
- "restart": 重新运行
- "exit": 结束运行
- GET:
- `http://127.0.0.1:9880/control?command=restart`
- POST:
- ```json
- {
- "command": "restart"
- }
- ```
- RESP: 无
- """
- import argparse
- import os
- import sys
- now_dir = os.getcwd()
- sys.path.append(now_dir)
- sys.path.append("%s/GPT_SoVITS" % (now_dir))
- import signal
- from time import time as ttime
- import torch
- import librosa
- import soundfile as sf
- from fastapi import FastAPI, Request, HTTPException
- from fastapi.responses import StreamingResponse, JSONResponse
- import uvicorn
- from transformers import AutoModelForMaskedLM, AutoTokenizer
- import numpy as np
- from feature_extractor import cnhubert
- from io import BytesIO
- from module.models import SynthesizerTrn
- from AR.models.t2s_lightning_module import Text2SemanticLightningModule
- from text import cleaned_text_to_sequence
- from text.cleaner import clean_text
- from module.mel_processing import spectrogram_torch
- from my_utils import load_audio
- import config as global_config
- g_config = global_config.Config()
- # AVAILABLE_COMPUTE = "cuda" if torch.cuda.is_available() else "cpu"
- parser = argparse.ArgumentParser(description="GPT-SoVITS api")
- parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径")
- parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径")
- parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径")
- parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
- parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
- parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu / mps")
- parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
- parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
- parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
- parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度")
- # bool值的用法为 `python ./api.py -fp ...`
- # 此时 full_precision==True, half_precision==False
- parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path")
- parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path")
- args = parser.parse_args()
- sovits_path = args.sovits_path
- gpt_path = args.gpt_path
- class DefaultRefer:
- def __init__(self, path, text, language):
- self.path = args.default_refer_path
- self.text = args.default_refer_text
- self.language = args.default_refer_language
- def is_ready(self) -> bool:
- return is_full(self.path, self.text, self.language)
- default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language)
- device = args.device
- port = args.port
- host = args.bind_addr
- if sovits_path == "":
- sovits_path = g_config.pretrained_sovits_path
- print(f"[WARN] 未指定SoVITS模型路径, fallback后当前值: {sovits_path}")
- if gpt_path == "":
- gpt_path = g_config.pretrained_gpt_path
- print(f"[WARN] 未指定GPT模型路径, fallback后当前值: {gpt_path}")
- # 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用
- if default_refer.path == "" or default_refer.text == "" or default_refer.language == "":
- default_refer.path, default_refer.text, default_refer.language = "", "", ""
- print("[INFO] 未指定默认参考音频")
- else:
- print(f"[INFO] 默认参考音频路径: {default_refer.path}")
- print(f"[INFO] 默认参考音频文本: {default_refer.text}")
- print(f"[INFO] 默认参考音频语种: {default_refer.language}")
- is_half = g_config.is_half
- if args.full_precision:
- is_half = False
- if args.half_precision:
- is_half = True
- if args.full_precision and args.half_precision:
- is_half = g_config.is_half # 炒饭fallback
- print(f"[INFO] 半精: {is_half}")
- cnhubert_base_path = args.hubert_path
- bert_path = args.bert_path
- cnhubert.cnhubert_base_path = cnhubert_base_path
- tokenizer = AutoTokenizer.from_pretrained(bert_path)
- bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
- if is_half:
- bert_model = bert_model.half().to(device)
- else:
- bert_model = bert_model.to(device)
- def is_empty(*items): # 任意一项不为空返回False
- for item in items:
- if item is not None and item != "":
- return False
- return True
- def is_full(*items): # 任意一项为空返回False
- for item in items:
- if item is None or item == "":
- return False
- return True
- def get_bert_feature(text, word2ph):
- with torch.no_grad():
- inputs = tokenizer(text, return_tensors="pt")
- for i in inputs:
- inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
- res = bert_model(**inputs, output_hidden_states=True)
- res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
- assert len(word2ph) == len(text)
- phone_level_feature = []
- for i in range(len(word2ph)):
- repeat_feature = res[i].repeat(word2ph[i], 1)
- phone_level_feature.append(repeat_feature)
- phone_level_feature = torch.cat(phone_level_feature, dim=0)
- # if(is_half==True):phone_level_feature=phone_level_feature.half()
- return phone_level_feature.T
- n_semantic = 1024
- dict_s2 = torch.load(sovits_path, map_location="cpu")
- hps = dict_s2["config"]
- class DictToAttrRecursive:
- def __init__(self, input_dict):
- for key, value in input_dict.items():
- if isinstance(value, dict):
- # 如果值是字典,递归调用构造函数
- setattr(self, key, DictToAttrRecursive(value))
- else:
- setattr(self, key, value)
- hps = DictToAttrRecursive(hps)
- hps.model.semantic_frame_rate = "25hz"
- dict_s1 = torch.load(gpt_path, map_location="cpu")
- config = dict_s1["config"]
- ssl_model = cnhubert.get_model()
- if is_half:
- ssl_model = ssl_model.half().to(device)
- else:
- ssl_model = ssl_model.to(device)
- vq_model = SynthesizerTrn(
- hps.data.filter_length // 2 + 1,
- hps.train.segment_size // hps.data.hop_length,
- n_speakers=hps.data.n_speakers,
- **hps.model)
- if is_half:
- vq_model = vq_model.half().to(device)
- else:
- vq_model = vq_model.to(device)
- vq_model.eval()
- print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
- hz = 50
- max_sec = config['data']['max_sec']
- t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
- t2s_model.load_state_dict(dict_s1["weight"])
- if is_half:
- t2s_model = t2s_model.half()
- t2s_model = t2s_model.to(device)
- t2s_model.eval()
- total = sum([param.nelement() for param in t2s_model.parameters()])
- print("Number of parameter: %.2fM" % (total / 1e6))
- def get_spepc(hps, filename):
- audio = load_audio(filename, int(hps.data.sampling_rate))
- audio = torch.FloatTensor(audio)
- audio_norm = audio
- audio_norm = audio_norm.unsqueeze(0)
- spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
- hps.data.win_length, center=False)
- return spec
- dict_language = {
- "中文": "zh",
- "英文": "en",
- "日文": "ja",
- "ZH": "zh",
- "EN": "en",
- "JA": "ja",
- "zh": "zh",
- "en": "en",
- "ja": "ja"
- }
- def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
- t0 = ttime()
- prompt_text = prompt_text.strip("\n")
- prompt_language, text = prompt_language, text.strip("\n")
- zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32)
- with torch.no_grad():
- wav16k, sr = librosa.load(ref_wav_path, sr=16000)
- wav16k = torch.from_numpy(wav16k)
- zero_wav_torch = torch.from_numpy(zero_wav)
- if (is_half == True):
- wav16k = wav16k.half().to(device)
- zero_wav_torch = zero_wav_torch.half().to(device)
- else:
- wav16k = wav16k.to(device)
- zero_wav_torch = zero_wav_torch.to(device)
- wav16k = torch.cat([wav16k, zero_wav_torch])
- ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
- codes = vq_model.extract_latent(ssl_content)
- prompt_semantic = codes[0, 0]
- t1 = ttime()
- prompt_language = dict_language[prompt_language]
- text_language = dict_language[text_language]
- phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
- phones1 = cleaned_text_to_sequence(phones1)
- texts = text.split("\n")
- audio_opt = []
- for text in texts:
- phones2, word2ph2, norm_text2 = clean_text(text, text_language)
- phones2 = cleaned_text_to_sequence(phones2)
- if (prompt_language == "zh"):
- bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
- else:
- bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to(
- device)
- if (text_language == "zh"):
- bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
- else:
- bert2 = torch.zeros((1024, len(phones2))).to(bert1)
- bert = torch.cat([bert1, bert2], 1)
- all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
- bert = bert.to(device).unsqueeze(0)
- all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
- prompt = prompt_semantic.unsqueeze(0).to(device)
- t2 = ttime()
- with torch.no_grad():
- # pred_semantic = t2s_model.model.infer(
- pred_semantic, idx = t2s_model.model.infer_panel(
- all_phoneme_ids,
- all_phoneme_len,
- prompt,
- bert,
- # prompt_phone_len=ph_offset,
- top_k=config['inference']['top_k'],
- early_stop_num=hz * max_sec)
- t3 = ttime()
- # print(pred_semantic.shape,idx)
- pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
- refer = get_spepc(hps, ref_wav_path) # .to(device)
- if (is_half == True):
- refer = refer.half().to(device)
- else:
- refer = refer.to(device)
- # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
- audio = \
- vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
- refer).detach().cpu().numpy()[
- 0, 0] ###试试重建不带上prompt部分
- audio_opt.append(audio)
- audio_opt.append(zero_wav)
- t4 = ttime()
- print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
- yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
- def handle_control(command):
- if command == "restart":
- os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
- elif command == "exit":
- os.kill(os.getpid(), signal.SIGTERM)
- exit(0)
- def handle_change(path, text, language):
- if is_empty(path, text, language):
- return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400)
- if path != "" or path is not None:
- default_refer.path = path
- if text != "" or text is not None:
- default_refer.text = text
- if language != "" or language is not None:
- default_refer.language = language
- print(f"[INFO] 当前默认参考音频路径: {default_refer.path}")
- print(f"[INFO] 当前默认参考音频文本: {default_refer.text}")
- print(f"[INFO] 当前默认参考音频语种: {default_refer.language}")
- print(f"[INFO] is_ready: {default_refer.is_ready()}")
- return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
- def handle(refer_wav_path, prompt_text, prompt_language, text, text_language):
- if (
- refer_wav_path == "" or refer_wav_path is None
- or prompt_text == "" or prompt_text is None
- or prompt_language == "" or prompt_language is None
- ):
- refer_wav_path, prompt_text, prompt_language = (
- default_refer.path,
- default_refer.text,
- default_refer.language,
- )
- if not default_refer.is_ready():
- return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400)
- with torch.no_grad():
- gen = get_tts_wav(
- refer_wav_path, prompt_text, prompt_language, text, text_language
- )
- sampling_rate, audio_data = next(gen)
- wav = BytesIO()
- sf.write(wav, audio_data, sampling_rate, format="wav")
- wav.seek(0)
- torch.cuda.empty_cache()
- if device == "mps":
- print('executed torch.mps.empty_cache()')
- torch.mps.empty_cache()
- return StreamingResponse(wav, media_type="audio/wav")
- app = FastAPI()
- @app.post("/control")
- async def control(request: Request):
- json_post_raw = await request.json()
- return handle_control(json_post_raw.get("command"))
- @app.get("/control")
- async def control(command: str = None):
- return handle_control(command)
- @app.post("/change_refer")
- async def change_refer(request: Request):
- json_post_raw = await request.json()
- return handle_change(
- json_post_raw.get("refer_wav_path"),
- json_post_raw.get("prompt_text"),
- json_post_raw.get("prompt_language")
- )
- @app.get("/change_refer")
- async def change_refer(
- refer_wav_path: str = None,
- prompt_text: str = None,
- prompt_language: str = None
- ):
- return handle_change(refer_wav_path, prompt_text, prompt_language)
- @app.post("/")
- async def tts_endpoint(request: Request):
- json_post_raw = await request.json()
- return handle(
- json_post_raw.get("refer_wav_path"),
- json_post_raw.get("prompt_text"),
- json_post_raw.get("prompt_language"),
- json_post_raw.get("text"),
- json_post_raw.get("text_language"),
- )
- @app.get("/")
- async def tts_endpoint(
- refer_wav_path: str = None,
- prompt_text: str = None,
- prompt_language: str = None,
- text: str = None,
- text_language: str = None,
- ):
- return handle(refer_wav_path, prompt_text, prompt_language, text, text_language)
- if __name__ == "__main__":
- uvicorn.run(app, host=host, port=port, workers=1)
|